Decision Fusion Rules in
Multi-Hop Wireless Sensor
Networks

YING LIN
BIAO CHEN, Member, IEEE

PRAMOD K. VARSHNEY, Fellow, IEEE
Syracuse University

The decision fusion problem for a wireless sensor network
(WSN) operating in a fading environment is considered. In
particular, we develop channel-aware decision fusion rules for
resource-constrained WSNs where binary decisions from local
sensors may need to be relayed through multi-hop transmission
in order to reach a fusion center. Each relay node employs a
binary relay scheme whereby the relay output is inferred from
the channel impaired observation received from its source node.
This estimated binary decision is subsequently transmitted to the
next node until it reaches the fusion center. Under a flat fading
channel model, we derive the optimum fusion rules at the fusion
center for two cases. In the first case, we assume that the fusion
center has knowledge of the fading channel gains at all hops. In
the second case, we assume a Rayleigh fading model, and derive

fusion rules utilizing only the fading channel statistics. We show

that likelihood ratio (LR) based optimum decision fusion statistics

for both cases reduce to respective simple linear test statistics

in the low channel signal-to-noise ratio (SNR) regime. These
suboptimum detectors are easy to implement and require little

a priori information. Performance evaluation, including a study
of the robustness of the fusion statistics with respect to unknown

system parameters, is conducted through simulations.
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I.  INTRODUCTION

Wireless sensor networks (WSN) have generated
enormous interest from researchers in various
disciplines. Current and future applications range from
battlefield surveillance, health care and telemedicine,
to environmental and habitat monitoring and control
[1-6].

A distinct feature of WSNs is that wireless
communication networks become an integral
component of the WSN. This is especially true
for resource-constrained WSN where a divide and
conquer approach (i.e., treating the communication
network as an independent entity) may lead to
significantly inferior performance as well as potential
wastage of limited resources. The integration of
information transmission and processing appears
to be a promising direction for optimized system
performance under given resource constraints. Of
particular concern in the work reported here is the
information fusion task at the fusion center. For
a distributed detection system, the conventional
way is to consider communication and decision
fusion as two independent parts, and to design
them separately. Numerous results on the classical
distributed detection problems were obtained during
the past decades. In [7] and [8], optimum fusion
rules have been investigated under the conditional
independence assumption. Many papers have also
addressed the problem of distributed detection
with constrained system resources [9—13], most of
which have provided the solutions to optimize bit
allocation (or sensor selection) given a constraint
on the total amount of communications. The above
results, however, are mostly obtained based on the
assumption of lossless communication (i.e., the
information sent from the local sensors is perfectly
recovered at the fusion center). This assumption is
not realistic for many WSNs where the transmitted
information has to endure both channel fading
and noise/interference. This motivates the study of
the fusion of local decisions corrupted by channel
fading/noise impairment.

Decision fusion with nonideal communication
channels has been studied at both the fusion center
level [14—17] and at the sensor level [14, 18, 19]. In
[14], Thomopoulos and Zhang derived the optimal
thresholds both at the fusion center and the local
sensors by assuming a simple binary symmetric
channel between sensors and the fusion center.
Their method is quite complex, and requires global
knowledge of the entire system. Besides, the binary
symmetric channel assumption does not allow a
full integration of transmission into the decision
fusion stage. In [15]-[17], channel-aware decision
fusion rules have been developed using a canonical
distributed detection system where binary decisions
from multiple parallel sensors are transmitted through
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fading channels to a fusion center where they are
combined for final decision making. The canonical
fusion structure, while theoretically important and
analytically tractable, may not reflect the way a

real WSN operates. In most WSN applications,
resource constraints, especially the energy constraint
in applications involving in-situ unattended sensors
operating on irreplaceable power supplies, often limit
the transmission range for each sensor node. Radio
transmission is one of the major power consumers
among all the functions for a sensor node, and the
required transmission power is not linear in distance
between the transmitter and the receiver. Hence, in
order to reach a fusion node, a decision made at a
local sensing node may need to go through multiple
hops for minimal energy consumption.

The objective of this work is to extend the
channel-aware decision fusion rules developed in
[15]—-[17] to more realistic WSN models that involve
multi-hop transmissions. We present a theoretical
formulation of the multi-hop decision fusion problem
and design new fusion rules for the case where
binary local decisions are relayed to a fusion center
through multi-hop wireless channels. For multi-hop
transmissions, the relay nodes are to convey the
information received from their source nodes to their
destination nodes. Under an ideal situation, each
relay node recovers the original decision correctly;
hence the fact that local decisions undergo multiple
hops does not have any impact on the fusion center
design. However, the assumption of reliable relaying
is overly optimistic in light of the limited resources
and stringent delay requirement, as well as the
potential severity of channel impairment. Thus, in
this work, we assume a simple memoryless relay
scheme where each relay node decides what to
transmit using its own observation by employing a
maximum likelihood (ML) estimate. The estimated
decision may be inconsistent with what was originally
transmitted and this has to be taken into account in
the fusion rule design. Given the above binary relay
scheme and assuming a flat fading channel model,
we derive the optimal decision fusion algorithms for
the following two cases. In the first case, we assume
that the fading channel gains for all the hops are
available at the fusion center and derive the optimal
likelihood ratio (LR) based fusion statistic. In the
second case, we relax the requirement to knowing
only the fading channel statistics by assuming a
Rayleigh fading channel model and derive the
corresponding optimal LR fusion rule. We emphasize
that the flat fading channel assumption is valid for
many WSN applications where sensors employ a low
rate transmission scheme (hence large symbol interval)
and the fact that they are densely deployed in an open
field, resulting in a small delay spread.

The LR-based optimal fusion rules obtained
for both cases still require a significant amount of

prior information that is either not available or, in
some cases, can only be acquired at a cost level

that is not permissible for real WSN systems. For
example, for fast-fading channels, channel envelopes
may only remain constant for a single channel use.
Thus, each relay node may need to send the channel
envelope information to either its next level relay

or the fusion center during each relay transmission.
This will increase the system overhead that cost extra
resources. Therefore, fusion rules that do not rely on
channel coefficients would be practical. As such, by
imposing additional assumptions, we further reduce
the LR-based fusion rules to some simple linear

test statistics in the low signal-to-noise ratio (SNR)
regime. As it turns out, both low SNR alternatives
deemphasize the sensors with more hops and are in
the form of a weighted sum of the channel outputs,
where the weight is a function of the product of all
link SNRs along each relay path. We also show that
the Chair-Varshney fusion rule [7] provides a high
SNR approximation to the LR-based fusion rules in
both cases.

The organization of the paper is as follows. In
the next section, we review the previous work on
fusion rule design for a canonical parallel distributed
detection system with single hop transmission between
sensor nodes and the fusion center. In Section III,
we lay out the model for a multi-hop based sensor
fusion network. The case of known fading channel
amplitude is treated in Section IV, followed by the
case where only the fading channel statistics are
known in Section V. Performance evaluation is given
in Section VI and we conclude in Section VII.

II.  REVIEW OF PREVIOUS WORK

Fig. 1 depicts a typical parallel fusion structure
where a flat fading channel model is assumed between
each sensor and the fusion center. K sensors collect
data generated according to either H or H,, the
two hypotheses under test, make local decisions,
and transmit these decisions over fading and noisy
channels to a fusion center. The fusion center tries
to decide which hypothesis is true based on the
received data y, for all k. Assume that the kth local
sensor makes a binary decision u, € {+1,—1}, with
false alarm and detection probabilities Py, and Fy,
respectively. That is, we have Plu, = 1| Hy] = Py, and
Plu, = 1| H,] = Pj,. The received signal at the fusion
center from the kth sensor is

Vi = Iy +my, (1)

where £, is the channel fading envelope and n, is
zero-mean additive Gaussian noise with variance o2.
Using the above fusion model, we can obtain the
following set of five decision fusion rules, depending
on the amount of prior knowledge available [15, 16].
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Fig. 1. Canonical single-hop fusion model in presence of fading

channels.

Throughout this work, we use A® to denote the
fusion statistics for the single hop transmission model
in order to distinguish from that for the multi-hop
systems.

1) Optimal LR-based fusion statistic using
complete prior knowledge. Assuming complete
channel knowledge, the optimal LR-based fusion

statistic was derived in [15] and [17]
& PeOm/20) 4 (1 — P e (Ontho?/20%)

AY =
1 H Pfkef((yk*hk)z/Z(ﬂ) + (1 *Pfk)ei((yk*'hk)z/foz)

k=1
(2
where y = [y,,...,yx]” is a vector containing
observations received from all K sensors.
2) LR-based fusion rules using only fading
statistics for Rayleigh fading channel. Implementing

the optimal LR test as in (2) requires that all a priori
information, including the instantaneous channel
gains, is available. Under the Rayleigh fading model,
the LR-based fusion statistic using only the fading
parameter is summarized below [16].

THEOREM 1 The LR for decision fusion under the
Rayleigh fading channel model is

P, [1 + \/ﬂtyke(’zyfﬂ)Q(—ykt)}
K +(1—-P) [1 - \/Eryke<’2>‘i/2>Q(zyk)]

AY=T]

2,2
P14 Ve PPy

+(1=Py) [1 - \/Etyke(’sz/%g(zyk)}
3)

where t = (0,./0,\/02 + 02) with 202 being the mean
square value of the fading channel, o2 is the noise
variance, and Q(-) is the complementary distribution
function of a standard Gaussian random variable.

3) A two-stage approximation using the
Chair-Varshney fusion rule. A direct alternative
to the above LLR-based fusion rules is to consider
the information transmission and decision fusion as
a two-stage process: first y, is used to infer about
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uy; then, the estimates of u,; are employed in the
optimum fusion rule. Given the model in (1), the ML
estimate for u, is i, = sign(y,). Applying the fusion
rule derived in [7], herein termed the Chair-Varshney
fusion rule, we obtain the following statistic

1-P P

) _ dk dk

Ay = g log(l_ fk>+ g log(Pfk>. 4
<0 >0 .

Not surprisingly, Ag“') can be shown to be

mathematically equivalent to the two LR-based fusion
rules in the large SNR regime (i.e., 0?2 —0) [15, 16].

4) Fusion statistic using a maximum ratio
combiner (MRC). In the low SNAR regime(o? — 00),
we can show that A\ reduces to A = S, (P, — Py)
-h,y,. Further, if the local sensors are identical, i.e.,
Fy and Py are the same for all ks, then A(ls) reduces to
a form analogous to an MRC

K
g 1
AY = Ethyk. 6))
k=1

5) Fusion statistic using an equal gain combiner
(EGC). At low SNR(0? — c0), A} in (3) reduces
to AY =S5 (B, — Py)V2rty,. Further, if the local
sensors are identical, i.e., P, and Pfk are the same for

all ks, then A(zs) further reduces to a form analogous to
an EGC [16]

K
o 1
A = 2D Ve ©)
k=1

Among the above five fusion rules, A(ls), requires
complete channel knowledge and provides uniformly
the most powerful detection performance. At low
SNR, the MRC statistic provides the best performance
among the three suboptimum fusion rules; while at
high SNR, the Chair-Varshney fusion rule outperforms
the MRC and the EGC statistics. The EGC statistic,
however, provides better performance over a wide
range of SNR than the MRC statistic and the
Chair-Varshney fusion rule and requires the least
amount of prior information.

. MULTI-HOP DECISION FUSION PROBLEM

Consider a decision fusion network with multi-hop
transmissions as illustrated in Fig. 2. Each sensing
node observes data generated according to one of the
two hypotheses under test, makes a local decision,
and transmits the decision to a fusion center through
several relay nodes. Each relay node tries to retrieve
the decision sent from its source node from fading and
noise impaired observation and relays it to the next
node until it reaches the fusion center. The following
assumptions are used in our analysis.
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Relay 1

Fig. 2. Multi-hop parallel fusion model in presence of fading and
noisy channels between local sensors and fusion center.

1) Binary transmission: all sensors (including local
sensors and their relay nodes) make a binary decision
which is either +1 or —1.

2) All the channels are independent of each other;
and each of them can be modeled as a Rayleigh flat
fading channel with identical mean squared value 20?2,
ie, E[(h)*] =202, fork=1,2,....,K; i=0,1,...,M,.
Generalization to nonidentical channel statistics is
fairly straightforward.

3) Noise processes on all the channels are
Gaussian with zero mean and variance o2, and are
independent of each other.

4) Phase coherent reception, hence the effect
of a fading channel is simplified as a real scalar
multiplication given that the transmitted signal is
assumed to be binary.

5) Relay nodes do not directly observe the
target.

With the above assumptions, we can formulate our
multi-hop decision fusion network model as follows.

Suppose there are M, relay nodes between the kth
local sensor and the fusion node, then the number of
hops from the kth local sensor to the fusion center
is M, + 1. Let u denote the original binary decision
of the kth local sensor, while ut, i = 1,2,...,M,,
denote the retrieved decisions corresponding to the
ith relay node, where i is the hop index. Let Py, and
Py, denote the false alarm and detection probability
for the kth local sensor, i.e., P[u) = 1| Hy] = Py and
Plul =1|H|] =Py, withk=1,2,....K.

For each relay node, we assume a simple binary
output which is the ML estimate of the decision sent
from its source node. Hence, given that the noise is
Gaussian, we have

i i—lpi—1 , i—1
wy, = sign(uy  hy " +ny ).
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Let y, denote the input of the fusion center
corresponding to the kth local sensor, thus,

— M My M
Ve = U Iyt 4y

where h};(a nonnegative real number) is the
corresponding channel envelope and #;, is additive
Gaussian noise with zero mean and variance o>.
Our goal is to derive fusion rules using y,, k =
1,2,...,K, that provide robust performance and, at
the same time, require as little prior information as

possible.

IV.  FUSION RULES WITH KNOWN CHANNEL
ENVELOPES

In this section, we start with the derivation of
the LR-based fusion rules assuming known channel
envelopes. Here “known channel envelopes” refers
to the fact that the instantaneous channel envelope
R, k=12,...,K;i=0,1,...,M, are all available at
the fusion center. In Section V, we consider the case
where only channel fading statistics are available.

A. The Optimum LR-Based Fusion Rule

Using the multi-hop fusion model as described in
Fig. 2 and Section III, we now derive the LR-based
fusion rule at the fusion center. First we introduce the
notion of composite local performance indices, Pd(,f)

and P;,f), defined as
PP = PG =1 H)
P = Py = 1| Hy).

They are the probabilities of declaring H, at the
last relay when the true hypothesis is H; and
H,, respectively. This is different from the local
performance indices £y and Py.

Given }}(,f) and P, the LR can be written as

fk>
_ f(y| Hy)
" f(y | Hy)

- [Ty fOu L H
[Tzt SO | Ho)

KX fO L HOPL™ | Hy)
oo 2o SO | Ho Pl | Ho)

—

M, M2
K 1-:1(15)640%*%‘)2/2”2) +(1— El(g))ef((ywhkk)'/%z)

My, 5 . M,
Pt Rf(}f)e—((yk—hk‘)z/Za-) +(1— pf(}i))e—((ywhkk)z/%z)

>~

. N My 2
_ Pd(lz) +(1 _Bi(lg))e Qyihy* /o) 7
B (- B

—_

where the assumption of conditional independence of
local decisions is used.
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Using the model specified in Section III, the two
parameters Pd(,f ) and Pﬂf) can be derived as follows.
First, define

Pl =P =1|uf = LH)=Pu =1|u) =1)
Bl =P’ =1|u) = —1,H)=Pwl =1|u) =-1).
Hence,
PO = PGl = 1/H)
= Py =1 | uf, H)P | Hy)
= Pdkpljl‘c/[k +( - Pdk)%il‘c/[k ®)
f;f,f) = P(uy* = 1| Hy)
= Py =1 | uf, Hy)P(u | Hy)
0
= PPt + (1= PPyt €)

where Pl/,‘fk and le;fk can be recursively determined as

in the first part of Appendix A. Given P(‘) and P(‘)
the optimum LR test can be constructed accordmgly

B. Suboptimum Fusion Rules with Known Channel
Envelopes

Implementing the optimum LR-based fusion
rule using A, as given in (7) requires complete
channel knowledge of all the hops and the composite
local performance indices. To relieve the above
requirements, we propose two alternatives as the low
and high channel SNR approximations to the optimum
LR-based fusion rule. Consider the high SNR case
first.

At high SNR, i.e., 0> — 0, it is easy to show that
Plj}f" ~ 1 and PZZZI‘ ~ 0. Thus, based on (8) and (9), the
composite local performance indices Pd(,f) and Pf(,? with
known channel envelopes for a multi-hop wireless
sensor network can be approximated as

PO ~P, (10)

P )~ Ppy. (1D
This leads to the following result.

PROPOSITION 1 In the high SNR case, the log
likelihood ratio (LLR) with known channel envelopes
for a multi-hop WSN can be approximated as the

Chair-Varshney fusion rule
A3—logA ~210g< >+Zlog<P >
%>0 fh
(12)

<0
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PROOF Based on (7), (10) and (11), the LR can be
approximated as

_ v M )52
Ay~ [t (B B 177

. (13)
k=1 Py + (1 = f}'k)ef(zy"hyk/”z)

Thus, based on [17, Proposition 1], we have

logA, Nng(l ) +> log <ij>

<0 yi>0

Equation (12) is the same as the optimum fusion
rule derived in [7]. We notice that the high channel
SNR approximation for the multi-hop case is the same
as the one derived in [15] for the single hop case.
Intuitively, at high SNR, each relay node tends to
make the right decision, and thus can be ignored in
the fusion rule design.

Next, we give the low SNR approximation of A;.
We start with the low SNR approximation for the
composite performance indices.

LEMMA 1 At low SNR, El(kc) and Pf(,f) with known
channel envelope for a multi-hop WSN can be
approximated as

M, Mc—1 pm
P~ 3 W("i)
) M1 pm
PO~ L W(Pfk;). (15)
Yixea

e
A proof is provided in Appendix B.

\S)

Given the low SNR approximation of the
composite performance indices, we have the
following.

PROPOSITION 2 In the low SNR case, the LLR with
known channel envelopes for a multi-hop WSN can be
approximated as

K 2Mit (H%:o h?) Yk
logA, ~ (P, — P;)
: ; o (\/ 2770)Mk 02

(16)

PROOF At low SNR, 02 — 0o, e /7 _, | and
can be approximated by the first-order Taylor series

expansion, i.e., o2l o) o (2ykhkM"/02). Based
on (7), the LR is then approximated as, for large o2,

2y,
(L) (c) k"k
k T + (15 )<1—— ,2)

T e . 2y, "
k=1 p(©) (©) KT
P+ Pfk)<1 . )

a7
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2y,
K 1 —(1— POy y"

= H ) (18)
k

h
=1 1-Q _P(L)) yk

Taking logarithm on both sides of (18), we have

K
logA, ~ Z {log [1 —(1- (C))Zykh ]

k=1
My
)’k k (c) 2ykhk
— P + § 1-Pf
Wk )3 — Z 1( 52

2ykh

—log [1 ~(1-PY)

K
k=1

ZykhM

M= I[V)=

(Pd(kC) _ P(L))

IMy+1 (HMk hm) Ve

=) (B —Py) (19)
k=1 (\/ 27TU)
Here we have used the fact that log(1 + x) ~ x when

x —01in (a).

Assuming that all the local performance indices are
identical, we can rewrite (19) as follows

2B~ Fy) K( 2 >Mk h
02 ; \/%O' n];[()hk Vi
(20)

Neglecting the constant term that does not affect
detection performance, we have

K 2\ M [ A
MM%Z< ) HWYFZMn—
m=0

P 2no
21

logA, ~

where the composite channel envelopes h,(f) =

T (V@] J oy

A is similar to the MRC statistic derived as a low
SNR approximation for the single hop case in [15],
except that the weighting function is the composite
channel envelope 1, which involves the product of
weighted SNRs of all the hops except the last hop.
Clearly, at low SNR (i.e., o2 is large), those sensors
with more hops are deemphasized.

V. FUSION RULES WITH KNOWN CHANNEL
FADING STATISTICS

In this section, assuming that only channel
fading statistics are available, we derive the optimum
LR-based fusion rule and its two alternatives.
Consider Rayleigh fading channels. For simplicity,
assume that all links have identical fading statistics.
Denoted by 202, the mean squared value of the
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fading channel envelope, we have, for k = 1,2,...,K;
i=0,1,...,M,
iy h (h)?
flh) = U—geXP{ 202 [

Throughout this section, this probability density
function of the Rayleigh fading channel envelope will
be used to derive the fusion rules.

(22)

A. The Optimum LR-Based Fusion Rule With Known
Channel Fading Statistics

Denote A, as the LR that corresponds to the
case when only channel fadm%/lstatistics are known.
As in Section IVA, PM‘ and P,;* can be recursively
determined as in the second part of Appendlx A Then
using (8) and (9), we can determine P and P©. The
following theorem gives the form of A

THEOREM 2 The LR with known channel fading
statistics and composite local performance indices for
a multi-hop WSN is

o ﬁ 1+ [P — Q(ry )1V 2mry, e /2
2~ ¢ 2
oL+ [[}(k) — Q(ry)IV27ry, et/
where r = (0./0\/02 + c?) and Q(-) is the

complementary distribution function of a standard
Gaussian random variable.

(23)

PROOF Similar to the result in [16], we have
fO g = 1.Hy)

_ o ~(2/20%) [ Sy SEV2/2)
=—¢ & 1+ Q(—=ry )V 2rry e
V2m(o2 +0?) k

(24)
fO gt = —1,H,)

a o 02/20%) {1 — 0y, /—zwyke«ryk)z/z)} .

- \/2_7r(03 +02)
(25)
Then,
FO, [ H) = fO, |u® = LH)P* = 1| H,)
+ O, |l = —1,H)Pu* = —1|H,)
- g o OR120%)
\/ﬂ(ag + 02)
< [14 B = 0y 2mry e ).
(26)
Similarly,
FO 1 Hy) = O | = 1LHYPk = 1| Hy)
+ O, |} = —1,H)Puy* = —1| Hy)
- T 0
\/ﬂ(of +02)
X [1 + (P — Q(ryk))\/ﬁryke((’-"k)z/z)} )
(27)
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Thus,
_ f(y | Hy)
:T f(y | Hy)
H L+ IR = 0y 2mry e ™) -
L+ [P — QUry )V 2mry,ey?/2)

We notice that both LR-based fusion rules given
in (7) and (23) have similar forms to the ones derived
in [15] and [16] for the single hop case. However, for
the case with multi-hop transmissions, the composite
local performance indices P(,f) and P(,f) are functions
of local performance indices and channel SNRs
corresponding to the relay links.

The optimum fusion rule A, as in (23) for known
channel fading statistics requires knowledge of the
composite local performance indices, which involve
the number of relays for each local sensor and channel
parameters. Next, we derive several suboptimum
fusion rules that alleviate the requirement of a priori
information.

B. Suboptimum Fusion Rules With Known Channel
Fading Statistics

Again, we start by considering the low and high
channel SNR approximations of the optimum LR
fusion rule A,.

At high SNR, we still have P}* ~ 1 and P}* ~0.
Thus, the composite performance indices with known
channel fading statistics for a multi-hop WSN can be
approximated as

Py ~ Py (29)

P ~ Py (30)

This leads to the same approximation as before, i.e.,
in the high SNR case, the LLR with known channel
fading statistics for a multi-hop WSN reduces to the
Chair-Varshney fusion rule

logA, NZlog<l_ ) +) log (Pﬂ)

<0 >0
(31)
To show this, we substitute (29) and (30) into (23),
hence the LR can be approximated as
s ﬁ 1+ (By — Qry )V 2rry, e’/
2T T (B — Qry )WV 2y oD
(32)

Similar to [16, Proposition 1], we can establish in a

straightforward manner that
+ 1
vk >0 Tk

logA, = Zlog <

Yk <0

(33)

That is, at high channel SNR, the Chair-Varshney
rule approaches the optimum LR-based fusion rule
with only the knowledge of the channel fading
statistics. This high channel SNR approximation is
the same as that in Section IV for the known channel
envelopes case.

Next, we give the low SNR approximation of A,.
Again, we start with the low SNR approximation of
the composite performance indices.

LEMMA 2 At low SNR, Pd(,f) and P(,? with known
channel fading statistics for a multi-hop WSN can be
approximated as

(34)
(35

We give the proof in Appendix C.

Given the low SNR approximation of the
composite performance indices, we have the
following.

PROPOSITION 3 At low SNR, the LLR with known
channel fading statistics for a multi-hop WSN can be
approximated as

K
o\ M
logAzzZ\/%rr(Pdk—Rfk)(;‘) Y. (36)
k=1

PROOF To show this, we notice that in the low SNR
case, o2 — 0o, hence r — 0. Therefore,

(1 o\ M 1 1 ory |
5+ (3) (Elk5)<zr2 )
r2y?

XV2 ryk<1+ 2)

K
AZQH M1 o\ M 1 1
k=1 1 4 §+(_L) Pfk_E _ E_
o

A
><\/2_7rryk <1 + %)
37

i ()" (5 5) « ] v

~ m (38)
k=1 ]+ [(%) <fk—%) + %} V2rry,
1 (8)" (g P

= H (39)

— 5) V2rry, +r2y}?

where we have used the approximations of ¢()*/2 ~
1+ (r2y2/2) and Q(ry,) ~ (1/2) — (ry, /V2n) for

small r.
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Taking logarithm on both sides of (39),

K "
log, ~ ) log {1 +(%) (Pdk - %) V2mry, + rzyf}
k=1
K Gc My, 1 \/_ -
*ZIOg I+ (;) Pfk*E 2y, +roy;
k=1
K
a o, My 1
Sl ONOHES
1
o\ M 1
(9 (1-2) o]
K o "
=> Vo - (Z) Ty, (40)
k=1
where (a) follows from the fact that log(1 + x) ~ x for

small x.

If we assume further that all the local sensors have
identical local performance, then

K
.\ M
log Ay ~ V2mr(B — )Y (%) 41
0g Ay mr(Fy f); p Yk (41)
which is equivalent in detection performance to

=35

k=1

(42)

The suboptimum fusion rule /AXs again deemphasizes

those sensors with more hops in the low SNR regime.
If all the local sensors have the same number

of hops, i.e., M, are the same, one can neglect

any constant term that does not affect detection

performance. Therefore, A5 is equivalent to

W&
A5=Zyk'
k=1

Notice that (43) is analogous to the EGC statistic
as the constant does not affect detection performance.
This EGC form of the low SNR approximation of the
fusion rule for the multi-hop case is similar to that
obtained in [16] for the single hop case.

(43)

VI.  SIMULATION RESULTS

In this section, we compare the performance of
the fusion rules proposed in Sections IV and V using
simulation. For ease of SNR calculation, we assume
that all the channels follow Rayleigh fading with unit
mean squared value (unless otherwise specified),

i.e., 202 = 1. Binary decisions u} € {+1,—1}, k =
1,2,...,K,and i = 0,1,...,M,, are made at the local
sensors and the relay nodes. The channel coefficients
hfc, fork=1,2,...,K,and i =0,1,...,M, are generated
using the Rayleigh fading model. In all the figures,
“LR” corresponds to the optimum fusion rule A, using
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complete channel knowledge; “LR — ch” corresponds
to the LR-based fusion rule A, assuming only the
knowledge of the channel statistics; “Chair-Varshney”
refers to the statistic A5; “MRCstar” refers to the

statistic A,; “EGCstar” refers to the statistic As; and

“EGC” corresponds to the statistic A5. Because Aj is
equivalent to A5 when local sensors require the same
number of hops to reach the fusion center, we only
consider A5 to avoid confusion.

Fig. 3 presents the receiver operating characteristic
(ROC) curves at 10 dB channel SNR with 8 local
sensors. In Fig. 3(a), we consider the case where local
sensors require the same number of hops to reach the
fusion center. Specifically, we use the hop number
vector [2 2 22 222 2]. In Fig. 3(b), the local sensors
require different number of hops to reach the fusion
center. In particular, we use the hop number vector
[1 122223 3]. The kth element of a hop number
vector represents the number of hops required for
u) to reach the fusion center. The ROC curves are
obtained using 10® Monte Carlo runs. From the figure,
it is evident that the optimum LR-based fusion rule
(A) using complete channel knowledge gives the
uniformly most powerful detection performance, while
the fading statistic based LR fusion rule (A,) gives
slightly worse performance than A,. For the particular
parameter settings used here, as shown in Figs. 3(a)
and (b), the performance of A, (MRCstar) degrades
when the local sensors require unequal number of
hops compared with the equal number of hops case.
The other fusion statistics behave quite similarly
for both equal and unequal number of hops cases.

An interesting observation is that, while A5 requires
minimum a priori information compared with A, and

As, it provides a robust detection performance.

To better understand the performance difference
as a function of channel SNR, Figs. 4-6 give the
probability of detection P, as a function of channel
SNR for various fusion rules and different scenarios.
We set a constant system false alarm rate of Py, =
0.01. The channel SNR ranges from —10 dB to
20 dB. Each P, value is obtained over 30000 Monte
Carlo trials. Fig. 4 considers the symmetric scenarios
with identical local performances and same number
of hops among local sensors. Specifically, local
Py =0.05 and £y, = 0.5. In Fig. 4(a), with number
of sensors k = 8, we compare two different cases of
number of hops with 2 hops and 10 hops for each
local sensor, respectively. In Fig. 4(b), we increase
K to 16. We observe the following.

1) At low SNR and high SNR, the MRC-like
statistic A, and the Chair-Varshney rule approach the
optimum LR fusion rule A, respectively; while the
statistic A5 and the Chair-Varshney rule approach A,
at low and high SNR, respectively.

2) Each fusion statistic achieves a better
performance (larger P;) with increasing SNR.
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ROC curves for various fusion rules for Rayleigh fading channels with 8 sensors and SNR = 10 dB. (a) Hop number vector
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Fig. 4. Probability of detection as function of channel SNR for various fusion rules for Rayleigh fading channels with system level
Py =0.01, local P =0.05, By =0.05. (a) K =8. (b) K = 16.

3) When the number of sensors increases, the
performance of each fusion statistic also improves.

4) As expected, a larger number of hops leads to
performance degradation.

5) There is a stepwise increase associated with the
Chair-Varshney approach under the current parameter
setting, as shown in Fig. 4(a) and (b). Under the
condition of identical local performances and P, =
0.5, the Chair-Varshney statistic is equivalent to a
binomial (K, p) distribution with a fixed success
probability p = 0.5 under hypothesis H; [16]. Thus,
with a finite number of sensors, even for different

SNR values, the system probability of detection still
could be the same within a certain range of SNR. A
more detailed explanation on this “step” behavior can
be found in [16].

Fig. 5 shows how the fusion rules behave when
local sensors require unequal number of hops.
Specifically, we consider two examples with hop
number vector [1 122 2 2 3 3] in Fig. 5(a) and
[1122228 8] in Fig. 5(b), respectively. Fig. 5(b)
corresponds to the case where some local sensors
require only a few hops while other local sensors
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Fig. 5. Probability of detection as function of channel SNR for various fusion rules for Rayleigh fading channels with system level
PfO =0.01, K =8, local Pfk =0.05, P, =0.5. (a) Hop number vector [1 122 2 2 3 3]. (b) Hop number vector [1 1222 2 8 8].
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Fig. 6. Probability of detection as function of channel SNR for Rayleigh fading channels with system level P;, = 0.01, K =8, hop
number vector [2 2 2 2 2 2 2 2], local Pfk =0.05, local P, =1[0.5,0.6,0.4,0.8,0.8,0.8,0.6,0.7]. (a) With different channel mean square
' values. (b) With dependent channels.

require a large number of hops to reach the fusion
center. The other parameters are set the same as

the ones used in Fig. 4(a). In general, there is a
performance degradation when the number of hops
among local sensors are quite different, as in the case
shown in Fig. 5(b). As observed from b(zth Fig. 5(a)
and (b), except for the statistics A, and A, the other
four fusion schemes behave in a similar way as in
the equal hop number case. That is, the performance
improves as SNR increases. But for the statistics A,

and ]\5’ the performance degrades in a certain SNR

range as SNR increases. This unusual behavior is
due to the effect of the number of hops and channel
SNR dependent weight functions ((2/v27o)¥ in Ay
and (c¢/ o™ in ]\5, respectively). When SNR is high
(o is small) and the number of hops (M,) is large,
the weight could turn out to be a very large number.
Thus, the associated y, would be given more weight
and overemphasized. In other words, the good links
(i.e., sensors with less number of hops, thus less
weight) would be deemphasized at the fusion stage.
This explains why there is a performance degradation
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in such circumstances. This behavior is also not
surprising. Both A, and A are obtained as low SNR
approximations of the optimal LR-based fusion rules
A, and A,, respectively. There is no guarantee that
they will attain any reasonable performance at high
SNR.

In Fig. 6, we illustrate the performance
of the various statistics with two asymmetric
settings. Specifically, K = 8, hop number vector
(2222222 2], local Py =0.05, but local
P, are different. Specifically, we set P, =
[0.50.6 0.4 0.8 0.8 0.8 0.6 0.7] at individual sensors.
Fig. 6(a) corresponds to the scenario where the
channels have different mean square values. In
particular, we randomly generate 2(o’, )> within
(0.5,1.5), for k =1,2,...,K,and i =0,1,...,M,. The
resulting curves show that the performance of each
fusion statistic maintains a similar trend as seen in
Fig. 4(a). An exception is that there is no stepwise
increase for the Chair-Varshney statistic since it is not
equivalent to a binomial distribution in general when
local P, take different values.

In many cases, two or more local sensors may
share a common relay node in their respective paths
to the fusion center. Under this circumstance, the
corresponding relay channels may not be independent
of each other. Consequently, the conditional
independence assumption of y, is no longer valid. It
is therefore of interest to study how the presence of

channel dependence affects the detection performance.

An example is given in Fig. 6(b) with 8 local sensors
and each sensor require 2 hops to reach the fusion
center. We assume that sensors 1 and 2 share a
common relay node therefore their respective relay
links are assumed to share identical channels, i.e.,
h! = hl. From the plot, the detection performance is
quite similar to that of the independent channel case
shown in Fig. 6(a).

A comparison of the computation times for
obtaining the curves of P, versus channel SNR
for various fusion rules is given in Table I. These
simulations were implemented on a 2.40 GHz Intel
Pentium(R) 4 processor using MATLAB 6.5 with
system false alarm rate Py, = 0.01, local performance
indices Py, = 0.05, Fy = 0.5, SNR ranges from
—10 dB to 20 dB, but with 30 sample points. Each
P, value is again obtained over 30000 Monte Carlo
trials. As expected, as the number of sensors and
hops increase, the computation times for simulations
also increase. Roughly, the computation time is
proportional to the number of sensors.

VII.  CONCLUSIONS

In this paper, we have presented a theoretical
formulation of the multi-hop decision fusion problem
and designed fusion rules for binary decisions
transmitted over multi-hop wireless channels

TABLE I
Computation Time (in Seconds) to Obtain Curves of P, Versus
Channel SNR

Number of  Hop Number  Hop Number  Hop Number
Sensors Vector Vector Vector
[22...2] [6 6...6] [10 10...10]
K =38 80.406 97.375 124.359
K =16 161.844 198.688 257.125

undergoing Rayleigh fading in the presence of
additive Gaussian noise. We derived the optimum
LR-based fusion rule for two cases: with complete
channel knowledge and with the knowledge of
channel fading statistics. For both cases we showed
that the Chair-Varshney fusion rule approaches

the optimum LR-based fusion rule at high channel
SNR, while at low channel SNR the two LR-based
fusion rules reduce to different forms of weighted
sums of the fading channel outputs. Both low SNR
suboptimum fusion rules deemphasize the sensors
with more hops. Specifically, with complete channel
knowledge, low channel SNR approximation leads to
an MRC-like scheme and the weights are functions
of the product of all the link SNRs along each relay
path. With known channel fading statistics, the weight
involves local performance indices and channel
parameters. Under certain conditions, this low channel
SNR approximation reduce to a simple EGC form.
For most resource-constrained (in both energy and
bandwidth) WSN, fusion rules that do not rely on
channel coefficients would be practical. Among
them, the scheme with an EGC form would be an
attractive choice, requiring the least amount of prior
information.

We point out here that the conditional
independence assumption of y, may not be valid when
the same relay node is used by different sensors and
channel fading is really slow. However, our simulation
results indicate that under the conditional dependence
condition, the derived fusion rules still behave similar
to the conditional independence case.

Our work is based on the assumption that the
target is not directly observed by the relay nodes.
Each relay node makes a simple binary decision based
on its noisy input and sends it to the next relay node.
This may not be the optimum relay strategy. Further
research will focus on the signaling scheme design for
the relay node and how the signaling will affect the
fusion rule.

APPENDIX A.  DERIVATION OF P¥ AND P}

Define
Bl =Pu,=1|ui"'=1) (44)

P =P =1]u)=1) (45)
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Q=P =1|u"'=-1) (46)
Py =P = 1|wl = —1). (47)
1) Given the assumption of known channel
envelopes, Pl/,‘fk can be recursively determined as
follows
1 0, .0 hy
Plk:P(hk+nk>0)=1—Q<;"> (48)
. . ) hifl
B=Ph ' +n'>0)=1-0 (kT) (49)
P&H—l =Pkm+lP1’l)(1+(1_B(m+l)(1_Pl’;(l) (50)
P =B+ (=B RN (5D

P;Z[k can be similarly recursively determined. In
fact, because each hop can be viewed as a binary
symmetric channel (BSC), we can show that Pz[,‘f" =

1 —Pll}c”k. The proof is as follows
1 0_ 70 hy 1
By =P, —h/>0)=0 P =1-P; (52)

. . . hi-l .
Qi =P ' —h'>0=0 <—’<0_ ) =1-P
(53)

Byt = (1 -0 ey + 0t (1 - BY). (54)

Here Q! is equivalent to the crossover probability of
the BSC.
Using induction, assume

By =1-Fg. (55)

Then, based on (53), (54), and (55), we have

PZrlrcH—l — (1 _I)lrl?)ljlc’n+1 +Pl’1?(1 _Pkm+1) =1 _Plrl'cH—l‘
(56)
Thus,

MI — MI
Py = 1Pl (57)

2) Given the assumption of known channel fading
statistics, we have

1 g
1 c
Plk 5t

R 58

2 2\/02+0? (58)
1 o

P=—+—__. 59

k72 2\/02 +0? (59

Equations (58) and (59) can be easily derived based
on [16, Lemma 1]. Then, by (50) and (51), we can
recursively determine Pf}fk.

le;fk can be obtained in a similar fashion.
Alternatively, we still have Pz’,‘f‘ =1- Pl/,‘fk
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APPENDIX B. PROOF OF LEMMA 1

In the low channel SNR case, 02 — oo, we use the

approximation of Q(h/o) ~ (1/2)—(h/ V27o), then
_ RY_ 1, W
r=1-o(if) =3+ 55
(o) (o) ()l
ag ag g g
2h0n!

4+ —_—

1
2 (Vo)

k—1 k—1
E];(:P)lkil <1Q<hk—>) +(17P1k71)Q (hk—)
g g

_ k=1 o m
Zk ! (Hm:Ohk)
( 27T0')k
2 (I 1)

( 27ra) M

~

+ (60)

N =

PY

w ~x+

(61)

(ST

Here (60) can be proved by induction.
Similarly, we can get

M—1 M1 pm
P - : (J(;:ﬂhk ) (62)

Thus by (8) and (9),

My HMkfl hm
1 m= 1
P(C)z§+—( ° k)(Pdk ) (63)

dk ( \/ﬂa) My
2% (T ny) 1 )

t——wm \n3

(7o)

P(C) s

A (64)

| =

APPENDIX C. PROOF OF LEMMA 2

2

In the low channel SNR case, 0“ — oo, then

)

1 m
+5 (% (65)
1 o, \ M
Rl =g+a(Z)
Equation (65) can be derived by induction.

Similarly,
1 1 /0 \M
Mo 2~ (Zc
By~ 3 2(0—) '

(66)

(67)
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Thus by (8) and (9),

PO ~ (68)

()" (mu-3)
(%) (ma-3)

= =

17;]? ~ (69)
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