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Addressed here is the quickest detection of transient signals
which can be represented as hidden Markov models (HMMs),
with the application of detection of transient signals. Relying on
the fact that Page’s test is equivalent to a repeated sequential
probability ratio test (SPRT), we are able to devise a procedure
analogous to Page’s test for dependent observations. By using
the so-called forward variable of an HMM, such a procedure
is applied to the detection of a change in hidden Markov
modeled observations, i.e., a switch from one HMM to another.
Performance indices of Page’s test, the average run length (ARL)
under both hypotheses, are approximated and confirmed via
simulation. Several important examples are investigated in depth
to illustrate the advantages of the proposed scheme.
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I. INTRODUCTION

A major signal processing challenge facing
sonar designers is the automatic detection of
passive acoustic signatures. In many cases these
signatures take the form of a transient statistical
burst; although excellent techniques exist for the
detection of such changes under an assumption of
statistical independence, there is evidence that this
assumption is in many cases unreasonable. In fact,
many underwater acoustic transients, either man-made
or of biological origin, undergo a cycle of behavior
(attack, tonality, decay, etc.), and therefore do not
admit an independence assumption.

The dependencies of transient signals
are sometimes disguised—not necessarily
sample-to-sample correlation, but rather a structural
form. As an illustration, consider bursts of random
transients buried in Gaussian noise. The appearance
is of increased variance of the observations, as
illustrated in Figs. 1(a) and 1(b). The cyclic nature
of the increased-variance observations, i.e., the
on-off nature of the random signal, clearly suggests
dependence between clumps of transients, yet all
observations are uncorrelated and hence recognition of
this dependence using standard techniques would be
problematic. To detect such transients, first consider
blockwise processing. If the increased variance
transient appears in the whole data window, then it
is easy to see the likelihood ratio test amounts to an
energy detector. However, if the transient appears in
only part of the data window, the usual likelihood
ratio technique does not apply if the location is
unknown. Heuristic approaches have been proposed
under various assumptions [7, 15, 16, 25], but their
performances rely on the validity of assumptions
about the transient signal. For example, in [16], it
was assumed that partial knowledge, such as the
burst length, is available, and that there is only one
burst within a data window; while in [7, 15, 25],
assumptions are made regarding the frequency
occupancy of the transients.

On the other hand, a change detection scheme
such as the CUSUM (cumulative sum) procedure
does not require the knowledge of the starting or
ending points of the transient signal. Specifically, for
a CUSUM scheme, data are processed sequentially as
they arrive and a detection is declared whenever the
CUSUM exceeds a threshold. The standard Page’s
test designed for the detection of Gaussian increased
variance transients, however, does not fully utilize the
on-off property of the transient signals. For a certain
transient strength (the variance increase in this case),
the detection probability depends on the transient
length [10]. Thus the short-duration nature of each
component burst could evade a system detection due
to the fact that the CUSUM statistic would tend to
decrease during the quiescent period. There is no
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Fig. 1.

Examples of Gaussian-bursts transient signal. Transient shown is transient C in Table L. Transient starting time is 100.

(a) Generated transient burst. (b) Transient buried in Gaussian background.

aggregation of CUSUM statistic between different
clumps if the quiescent period is long enough such
that the CUSUM statistic is at or near zero when the
next burst starts. The point of this work is that this
can be overcome if the cyclic behavior is integrated
to the transient model—that is, the quiescent period
in between two bursts is now part of the transient
model. A natural choice that captures the (stochastic)
transition between “on” and “off” states is a two state
hidden Markov model (HMM).

Although important, the above example is
somewhat simplistic. However, the idea of capturing
the possible dependence structure in a transient signal
is of great value for improving detection probability.
Such dependence not only exists in the time domain,
where the occurrence of transient follows cycle of
distinct Markov states, it could also occur in the
frequency domain where the frequency band of
transient signal exhibits contiguity from time to time
[24]. In fact, in a paper by the same authors [2], such
an HMM structure was used to form the transient
(frequency line) detector which exhibits performance
close to optimal. Improvement over these detectors,
via use of amplitude and phase information, was
investigated later [3].

In [2] the detection of a frequency line modeled as
an HMM is achieved using blockwise processing. That
is, for a fixed data window, the likelihood functions
under HMM-present and -absent hypotheses are
computed for the block of data, and the detector
obtained thereafter. Such blockwise processing
loses appeal in practice since the transient signal
could start and end at arbitrary unknown times.
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On the other hand, a sequential change detection
scheme, if available, is more attractive in both its
easy implementation, performance gain (in terrs of
both detection probability and delay to detection),
and robustness to the unknown starting time of the
transient signal.

In each of the above examples, while the
transient-present observations could be represented as
an HMM, those for transient-absent are independent
random noises. A more general model is that both
signal-present and signal-absent observations are
all HMMs with different parameters. A realistic
example is an underwater acoustic system where there
are always some background transients (biological
sound, for example) going on and our interest is in
the detection of those man-made transients. Hence,

a generic problem is to detect a “new” HMM in the
presence of an “old” one. However, as pointed out in
[8], the superposition of two HMMs with common
observation space is equivalent to a single HMM

with an expanded state whose state transition matrix
is simply a Kronecker product of that of the two
superimposing HMMs. Therefore our focus here is

to detect a possible switch from one HMM to another.
A treatment of the detection of superimposed HMM
transients is in [9].

The goal of this work is therefore to pursue a
CUSUM-like procedure for the detection of change in
HMM, i.e., we want to build a Page detector that can
quickly detect a switch from one HMM to another.
The organization is as follows. Section II gives the
necessary background in both Page’s test and HMMs.
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In Section III, a Page detector based on the idea of
a repeated SPRT (sequential probability ratio test, to
be discussed in the following section) is proposed
for the detection of an HMM transient, followed
by performance prediction in terms of average run
length (ARL) in Section IV. We study in detail a
few important examples in Section V to illustrate the
practical implementation of the proposed scheme, as
well as the performance gain as opposed to alternative
detectors. Section VI gives concluding remarks.
Throughout this work, we deal only with discrete
state HMMs, although these may have real- and/or
vector-valued observations. We call those HMMs with
discrete (finite or countable alphabet) observations
discrete, while otherwise we call them continuous.
Further, for simplicity, we assume that all HMMs
involved are ergodic and distributed according to their
stationary distributions at commencement. Such a
stationarity assumption amounts to requiring that the
initial state of the underlying Markov chain follows its
stationary (equilibrium) distribution. The stationary
assumption is purely a technical requirement for
theoretical development. Our simulation results
indicate that the procedures we develop work equally
well for a nonstationary HMM.

Il.  BACKGROUND
A. Sequential Probability Ratio Test

We first revisit the general formulation of the
SPRT. The reader is encouraged to refer to [4] for an
excellent and thorough treatment of these. Suppose we
have the following hypothesis test:

n=12,...
n=12,....

Note here » is not a fixed number; data arrives

continually, and a decision is made when the evidence

warrants. For any specified n, the likelihood ratio is

_ B Be(xp) 3 B [ X g a %)
Py(x")  Py(x) P Py | x_y,en0,xp)

2

H :x" = {x;,%5,....x,} ~ By, M

K x"={x,x5,..,x,} ~ Fy,

A(n)

The SPRT, also called Wald’s test, consists of
choosing real numbers 0 < B < 1 < A < 0o and
defining

N*=min{n >1: A(n) > A or A(n) < B} 3)
to be the stopping time. We say H (K) is accepted if
AN*) < B (A(N*) = A).

The performance measures are, as in the fixed

sample size test, in terms of false alarm rate and
probability of missed detection:

a=F(AN") 2 4)

“)
B =F(AN*) < B).
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The objective, as with conventional hypothesis testing,
is to minimize the missed detection probability 8
while keeping the false alarm rate « as small as
possible. Due to its sequential nature, two other
indices are also important, namely the ARL under H
and K, denoted respectively as T* and D*.!

T" = E,N*
D* = E,N*.

&)

Important in the design of the SPRT are Wald’s
approximations, which establish the relationship
between error probabilities (o and §) and the design
parameters (A and B):

Ax(l-p)/a
B~ B/(1 - a).

The validity of these relies on the assumption that at
stopping time, the exiting value of A(N*) is identical
to one of the two thresholds.

An SPRT is optimal for testing between two
independent distributions, in the sense that it
minimizes the ARL under both hypotheses given fixed
values of error probabilities [27]. This optimality,
however, does not in general carry over to dependent
observations. This lack of optimality is mostly due to
the lack of rigorous mathematical proof; in practice,
an SPRT works well even for dependent sequences.
Further, Wald’s approximation still applies to the
dependent case provided the excess over the boundary
(to be defined later) is negligible. The derivation of
Wald’s approximations is solely based on the property
of the likelihood ratio, with no specification on its
structure. This turns out to be important in predicting
the performance of the proposed scheme.

6)

B. Page's Test

Page’s test [17], also known as the CUSUM
procedure, is an efficient change detection scheme.
A change detection problem, commonly referred to
as change-point problem in the statistic literature, is
such that the distribution of observations is different
before and after an unknown time n,; and we want to
detect the change as soon as possible. Casting it into a
standard inference framework, we have the following
hypothesis testing problem

H : x(k) = v(k) 1<k<n
K : x(k) = v(k) 1<k<ng N
xk)y=z(t) ny<k<n

where x(k) are observations and v(k) and z(k) are
all independent identically distributed (IID), with
probability density functions (pdf) denoted as f;; and

ITo distinguish, we use T* and D* to denote the ARL for an SPRT,
and reserve T’ and D for the ARL of a CUSUM.
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fx respectively. Note that under K the observations
are no longer a stationary random sequence; their
distribution has a switch at ny from fy to fg.

The Page decision rule, which can be derived
from the generalized likelihood ratio (GLR) test [4],
amounts to finding the stopping time

N = argmin{(max L;) _>_h} ®)
n 1<k<n

where L} is the log likelihood ratio (LLR) of

observation {x,,...,x,}, and argmin, f(n) denotes

the value of n that achieves the minimum for f(n).

Given that the observations are IID, (8) can be easily

reformulated as

N = argmnin{ (L(n) ~ 12}2 Lk — 1)) > h} ®

where
k
Ak fK(xi))
©=h Zl ( Jfux)
with L(0) = 0. This is based on the fact that, given
independence,
Ly =L+ L (1)
Equation (9) allows us to write down the standard
recursion for the Page’s test
N = argmin{S, > h} (12)
in which
S, = max{0,S,_, +g(x,)} (13)
and
fx&x ))
x,) =In{ =22 14
st =155 (9

is the update nonlinearity.

Page’s recursion assures that the test statistic is
“clamped” at zero; i.e., whenever the LLR of current
observation would make the test statistic S, negative
(which happens more often when H is true), Page’s
test restarts at zero. The procedure continues until
it crosses the upper threshold 4 and a detection is
claimed. Thus, operationally, Page’s test is equivalent
to a sequence of SPRTs with upper and lower
thresholds /# and 0. Whenever the lower threshold O is
crossed, a new SPRT is initiated from the next sample
until the upper threshold 4 is crossed. A typical
test is shown in Fig. 2. The schemes of Figs. 2(a)
(corresponding to (8)) and 2(b) (corresponding to
(12)) are equivalent, but usually the latter is easier to
implement.

In practice, the update nonlinearity g(x;) need
not be an LLR as in (14), since this might not be
available as in the case when dealing with composite
hypotheses or with hypotheses involving nuisance
parameters. For a nonlinearity other than the LLR, a
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Fig. 2. Example of Page’s test statistic. (a) and (b) represent (8)
and (12), respectively. They are equivalent interpretations of
Page’s procedure, yet it is easily seen that the latter is more

convenient to implement.

critical requirement for the corresponding CUSUM
procedure to work is the “antipodality” condition:

E(g(x,) |H)<0

1s)
E(g(x,) | K)>0.

There is no false alarm rate or probability of detection
involved, since we see from the implementation

that, sooner or later, a detection is always claimed

as long as the test is “closed” (i.e., Pr(N < o0) =1
under both hypotheses). The performance of Page’s
test is therefore measured in terms of ARL under K
and H. It is always desired to have a small delay to
detection, usually denoted as D, while keeping the
average number of samples between false alarms,
denoted as T, as large as possible. Analogous to the
conventional hypothesis testing problem where we
wish to maximize the probability of detection while
keeping the false alarm rate under a fixed level, the
trade-off amounts to the choice of the upper threshold
h. The relationship between /4 and the ARL is often
calculated in an asymptotic sense using first or second
order approximations, usually credited to Wald and
Siegmund [23, 26].

As a final note, Page’s test using the LLR
nonlinearity has minimax optimality in terms of ARL,
i.e., given a constraint on the average delay between
false alarms, the Page’s test minimizes the worst case
delay to detection [12, 14].

C. Hidden Markov Models

An excellent tutorial on HMMs can be found
in [21]. A discrete time finite-state HMM is a
sequence of observations whose distribution at each
particular time depends on the state of an underlying
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Markov chain. One of its major applications is in
speech modeling to capture the temporal variation of
" short-term spectra of a speech signal. The existence of
the Baum~Welch reestimation algorithm [5], which
is in fact an application of the EM algorithm [13],
makes it a convenient tool for modeling dependent
observations.

A discrete HMM is specified by the following
parameter triple

A=(A,B,7) (16)

where

A=[aij]=[p(s,+l=j/s,=i)], Lj=1,...,N

is the state transition matrix of the underlying Markov
chain, where

B=[b,]=[pCx, = j|s, =D,

i=1,...,N; j=1,..M

is the observation matrix, and where

= [m = p(s, =1)] i=1,....N

is the initial probability distribution of the underlying
Markov states. Implicit to the above notation is

the finite number of states (N) and finite alphabet

of observations (M). A convenient choice of the
initial probability is the stationary distribution of

the underlying Markov states, so that the resulting
sequence can be regarded as stationary. The joint
probability for an HMM sequence is

n—1 n
P(SpaenesSppXysens X,) =T Ham,“ Hbm
t=1 i=1

and this can be considered its defining property.

As said before, our goal is to extend Page’s test to
the detection of the switch between HMMs, thus it is
desired that there be an efficient way to compute the
likelihood of a sequence of HMM observation given
the parameter triple. Fortunately, this is readily solved
using the so called forward variable. The forward
variable of an HMM is defined as

o,(i) = p(x1,Xg,.. ., X8, =1 | A). a7

It is easily checked that the following recursion holds
for the forward variable

N
() = (:Zar(i)aij} bjx,.,] (18)
i=1
with initial condition
a () =7(bjy, - (19)

This gives us an efficient way to calculate the
likelihood function of an HMM given observations
up to the current time. Such efficiency is both relevant
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and crucial to our approach, the on-line detection of a
change in the HMMs.

Although the formulation above is directed toward
discrete HMMs, it can be easily modified to apply to
HMMs:whiere the observations can take on continuous
values:"The only modification is to replace the B
matrix by a vector of density functions indexed by
each state. Hence the forward recursion is written in a
more general form:

N
@ () = [Za,@a,,} bi(x1) (20)
i=1
where b j(x, +1) is the conditional density function
(perhaps Gaussian) given the underlying Markov state
at time ¢ is j. This extension is useful when dealing
with continuous observation HMMs, and we use one

as an example in Section VB.

lit. “*€USUM PROCEDURE FOR DETECTING HMMS

A. CUSUM:-like Procedure for Dependent
Observations

Consider the same hypothesis test as in (7)
except that f;, and fi are general non-IID probability
measures. Assume under K the observations before
and after the change are independent of each other.?.
The likelihood ratio (parameterized by n;) is then

[ 1K)
JXGTH)
_ S XTOREG)
Ja D O, 1 X707
FieXno)

A(”Q”o) =

= —_— 21
fuXn | X2 @0
The LLR is then
n_ ) _ - fK(xilxi_l,...,xk)
! = In(A(r;K)) = gm (.“_”_—fH(x,- le__l,“_’xl)).
’ (22)

Previously, for the IID case, we claimed that the
stopping time could be reduced to (9), and hence the
Page test can be derived from a GLR perspective.
Here, however, this procedure cannot be repeated
exactly due to the fact that L} # L’f“ + L}, as seen
from (22).

We recall that Page’s test is equivalent to a
sequence of repeated SPRTs with thresholds # and

2This independence assumption is a realistic model in dealing with
signals buried in ambient noise. However, if there is an ambient
transient, such as one of biological origin as alluded to in Section I,
then the independence assumption is no longer valid. The treatment
of the detection of a new HMM overlapped with an extant one is
dealt with elsewhere [9] and is not discussed here.
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0. This idea can be carried over to dependent cases,
in which each individual SPRT bears the general
form depicted in Section IIA. Hence we propose the
following CUSUM-like procedure.

1) Start an SPRT with threshold O and A.

2) If the SPRT ends at time k with test statistic
below zero, reinitiate another SPRT from k + 1 as
if no previous data existed. That is, recalculate the
likelihood ratio based on the stationary marginal
distribution.

3) Repeat the above procedure until & is crossed.

In compact form, we can write, in a manner
similar to the standard Page recursion (12):

S, =max{0,S,_, + g(n;k)} 23)

where
. — fK('xn|xn—l"“’xk)> 4
soit) =in () e

and x; is the first sample after the last reset,

i.e., §;_; = 0. The difference with (22) is that

the conditional densities of both numerator and
denominator in the logarithm of g(n;k) depend on
the same set of random variables, which make a
Page-like recursion possible by utilizing the stationary
assumption of the HMMs. Note also that such a
scheme reduces to the standard Page test with a LLR
nonlinearity when the observations both before and
after the change are IID. Further, if the observations
before change are independent, we need only replace
S, 1 %100, x) with fy(x,) for the scheme to
work.

The scheme presented here is in the same form as
the sequential detector proposed in [1]. It was shown
that this procedure is in fact asymptotically optimal
in Lorden’s sense, i.e., as & — oo, it minimizes the
worst delay to detection given a constraint on the
average time between false alarms, among all possible
sequential schemes.

B. Justification of Proposed Scheme

The key property that allows a CUSUM-like
procedure is the antipodality of the update nonlinearity
as specified in (15). Applied to the proposed detector,
it amounts to requiring E(g(n;k) | H) < 0 and
E(g(n;k) | K) > 0, where g(n;k) is defined in (24).
We give the proof of E(g(n;k) | H) <0 in the
following

E(g(n;k) | H)
- / Fip Xy
x In f—_—_,((x" o0 %) dx,dx,_ ---dx,
fH(xn |xn—l""’xk)
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< /fH(x"1xn_1y- . .,xk)

x[1— M:V_f"—)) dx, dx,_,---dx,
S, 1 x5 xy)

=/f”(x"’x"—l’""xk)dxndx,._l"'dxk
_/fﬂ(x"—ls-..,xk)fx(xn lx,,_l,...,xk)dxndx"__l...dxk
= 1—/fﬁ(x,,_1,...,xk)dxn_l...dxk

x/fK(xnlxn_l,...,x,()dx"
=1-1
=0.

The claim that E(g(n) | K) > 0 can be similarly
proved. This property is in fact a direct result of the
nonnegativity of the (conditional) Kullback-Leibler
(KL) distance.

C. Detection of HMMs

In the previous section we have proposed a
CUSUM procedure that is applicable to the case of
dependent observations provided we have an efficient
means to calculate the likelihood function. This is
not always a reasonable assumption. Fortunately,
for the HMM, the existence of the forward variable,
together with its recursion formula as discussed in
Section IIB, enables efficient computation of the
likelihood function of an HMM. Specifically, the
likelihood function of an HMM with parameter triple
A could be written as

N
X, x5 1) =Y a) (25)
i=1

where N is the total number of states and the «,s are
the forward variables defined in (17).

Now the conditional probability in (22) is readily
solved as

VICA PRI 1 EDICAP AN APRINE W)
N .
= ____%H 210] (26)
Zi:lat—l(l)
where j = H;K.

Although we have followed the proposed
procedure to find the conditional pdf as in (26),
this step can in fact be avoided since the likelihood
function, defined as the sum of ¢, (i), can be used
directly by each individual sequential likelihood
ratio test. But in practice, it is found, the direct
use of the likelihood function as defined in (25)
will cause numerical underflow as the number of
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observations increases. For discrete HMMs it is easily
seen from the definition of the forward variable that
the likelihood decreases monotonically (and generally
geometrically) with the number of observations.

The conditional likelihood function defined in (26)
does not suffer such a numerical problem. We need
therefore to develop a way of recursively computing
the conditional likelihood function in (26) without
the direct use of the forward variable. This can be
achieved by scaling. Define o such that o} (/) = o, (i),
but for z > 1

[Zf{—-l a;(i)aij} bjx,H
Yiie®

It is easily checked that 3> | /(i) is identical to
JiGe [ x,_y,...,x) with j = H,K as defined in (26).
Thus the updating nonlinearity g(n;k) can be obtained
recursively without computing explicitly the exact
likelihood function at each time.

To summarize, for the quickest detection of
HMMs, we propose the following procedure.

1) Set¢ =1, I, = 0, where /, denotes the LLR at
time ¢.
2) Initialize the (scaled) forward variable o} using

A () = @7

aj(j) = 7 ()b,

for each possible state j and for both hypotheses H
and XK.
3) Update the LLR

etoyon (a0
tr S i | H)

4) If [, > h, declare detection of a change, stop;
If I, <0, setl, =0; ¢ =t + 1; then goto 2;
If 0 <!, < h, continue.
5) Sett=r+1;
Update the scaled forward variable ¢ using
27
then goto 3.

(28)

IV.  APPROXIMATION TO ARL

Exact computation of the ARL involves solving
Fredholm integral equations [4] which is, in general,
difficult and seldom rewarding even in the IID case. If
it is assumed that each test ends with the likelihood
ratio exactly at a threshold (no “excess over the
boundary”), then some simple and useful asymptotic
results are available for the IID case. (Siegmund has
addressed the excess over the boundary and come up
with a more accurate result [23].) But in the case of
dependence, none of the above approaches, including
the exact computation via solving Fredholm integral
equations, applies. In [19] Phatarfod attempted
to address the performance of an SPRT between
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different Markov processes. Although the mathematics
there is quite nice in that the author arrived at an
equation similar to Wald’s identity, the practical
implementation of it is involved even for the simplest
case of a two-state Markov process. Further, since the
approach is rooted in an assumption of observable
Markovianity, it does not apply to and apparently
cannot be extended to an HMM.

For the general dependent case, it is proposed
[4] that no analytic solution is feasible for the
ARL under both hypotheses. Instead, a weak
performance measure, the KL distance between the
two distributions to be tested in the dependence case,
is used [4]. These results are clever, but while the KL
distance does reflect in a general way how well a
Page test behaves given two particular distributions,
it does not calibrate the effect of the choice of the
threshold on the detection performance (ARL) for the
Page test, and hence does not provide a stand-alone
detector design. The goal in this section is therefore
to try to approximate the ARL, and thus provide some
guidance in the design of the Page’s test for detecting
an HMM, specifically in the choice of the upper
threshold h. We start with 7', the average number of
samples between false alarms.

A. Approximation of T. Average Delay Between False
Alarms

A straightforward way of obtaining 7 is via
simulation. However, direct Monte Carlo simulation
is computationally expensive due to the fact that the
desired T is usually very large. In [1], an ingenious
lower bound for such a procedure was obtained.
However the bound is introduced for the purpose
of proving the asymptotic optimality of a proposed
detector. Its reliance on the “probability of finiteness”
of the extended stopping time, first introduced by
Lorden [12], seriously hampers its applicability
to prediction of the ARL; the Page’s tests used in
practice are all finite with probability one. In this
section, we propose an approximation method which
requires only a small amount of simulation and
provides a reasonably good prediction.

Recall that a CUSUM procedure can be regarded
as a repeated SPRT with thresholds 4 and 0. Thus
our approach is based on the idea of finding the
relationship of ARL under H between the CUSUM
procedure and the corresponding Wald test. Let N be
the stopping time for the CUSUM procedure; N* (V)
be the stopping time of the corresponding SPRT that
ends at O (h); and i be the number of zero-resettings
before the final exceedance of the upper threshold 4.
Thus i is equivalently the number of SPRT runs in the
CUSUM procedure which end at zero. Denote by «
the false alarm rate of such an SPRT with 4 and O as
its log thresholds. It is straightforward to see that the
following relationship is true, provided the processes
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involved are stationary:
A
T=EuN

=Y [P(i = n)(EyN; +nEyN")]

=
[=]

1

[e(l — ) (EyN; + nEyN*)]

=
1]
(=}

1l-a
«a

EyN/ + EyN*
E, '

N*/a (29)

Q

where the last approximation follows from the fact
that usually « is very small. Thus we have reduced
the problem of estimating T to evaluating the two
quantities involved in (29): E,;N*, the ARL of a
single SPRT under H given that the lower threshold
is crossed, and «, the false alarm rate of a single
SPRT.

Consider E4N* first. Given the fact that each
SPRT starts at zero and the lower threshold of
the SPRT is zero, then with high probability
the test will end quickly (usually in one or two
steps) under H. Exact evaluation of EyN™ is
not possible, but approximation of it as unity is
reasonable.

The next quantity involved is the false alarm
rate for a single SPRT. We have stated that Wald’s
approximation holds true even with dependent
observations, provided the excess over the boundary
is negligible. Starting from (6) simple algebra
gives the approximate false alarm rate in terms of
thresholds

_1-B

o A—_B‘

(30
Note here A and B are upper and lower thresholds
corresponding to the original likelihood ratio. Hence
for the CUSUM procedure, their corresponding values
are ¢" and ¢° = 1. Substituting them into (30), we get
o = 0, which indicates a problem.

That problem is, as usual, the excess over
the boundary. The assumption behind Wald’s
approximation is that at the stopping time, the
CUSUM statistic coincides with one of the thresholds.
In practice, however, this is unlikely. For our case the
corresponding lower threshold for the LLR is zero,
and it is to be expected that the boundary excess
is significant enough to ruin the validity of Wald’s
approximation. Suitable modification of Wald’s
approximation is attainable by addressing the excess
over the boundary. To do this, define Q, = {¥__ :
N(#) = n, and L,(X,) < B}. In words, Q,, is the set
of sequences with stopping time n and decision H.
Hence the decision region for H is Qy = Une Op»
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where by definition @, and Q,, are disjoint given
n # m. Now we have

B=Pr(X_€Qy|K)

= ipr()zoo €0,1K)

n=1

=> : f&,1K)dX,,
n=1 "

-3 f &, 1K)dR,
n=1? 1Zw:N(@)=n, L.(Xn)<B|

- / ) L,X,)f (X, |H)dX,
[Roo: N (@)=n, L(X,)<B

where B is defined as

A Lnei fliw:N(¢)=n, L,(X,)<B| L,,(X'n)f ()?,, |4 )d}?n
- -«

_ Lt v @=n, @ EaEf Ky | H)dX,
Yot Stuen@y=n, Lazyzs f&n | K)dX,

It is easy to see that B is the posterior mean of test
statistic given a correct decision for H. Therefore
Wald’s approximations remain reasonable after
replacement of B by B.

At this point, we are able to obtain « via the
modified Wald’s approximation provided we have a
good estimate of B. Further, with « available, 7" can
be obtained as

B

h_F h
Tzl/a:e Ez ¢ _.
1-B 1-B

(€2

The remaining issue is how to evaluate B. An analytic
solution is not feasible except for the simple IID case.
In general it must be obtained via simulation; but to -
simulate B is far easier than direct simulation of 7.
For example, in most cases, a thousand samples will
give a reasonable estimate of B while direct simulation
of T in the magnitude of 10° would generally require
over a million samples for each Monte Carlo run, and
many runs would be necessary.

Assuming that B is obtained accurately, the
approximation (31) actually provides a lower
bound on T for the following reasons. First, the
approximation in (29) introduces a bias of —E N +
EyN* which is always negative for 2 > O (it takes on
average more samples for the CUSUM statistic to
cross h than O under the H hypothesis). Second, the
approximation of E,;N* = 1 actually provides a lower
bound on E,N* as the stopping time N* > 1 with
probability 1. Third, we have omitted the overshoot
over h; i.e., for a more accurate result, e in (31)
should be replaced by &" where 2" is the average value
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of CUSUM statistic in the likelihood ratio scale at the
stopping time (first passage over k). Nonetheless, as
we see later by simulation, the above approximation
does provide a reasonably close lower bound on

that obtained from direct Monte Carlo simulation

and therefore could serve as a guidance in threshold
selection. Improvement is possible by addressing the
above three points.

B. Approximation of D

The prediction of delay to detection, denoted as D,
is more straightforward. For the IID case, it is intuitive
to write down, for a large value of A,

_h__
Ey {g®}

where & is the threshold and E {g(x)} is the mean of
the nonlinearity ‘under K. The above equation follows
dig@btly from Wald’s first equation [22] provided
Sy = h, where Sy, is the CUSUM statistic at the
stopping time. This, again, is based on an assumption
of negligible overshoot, which explains why it holds
for only large values of h. For the dependent case
with the proposed scheme, however, the nonlinearity
is the logarithm of the ratio of the two conditional
likelihoods whose expectations are not identical for
different times.

For HMMs with finite-state Markov chains,
however, there hold some strong results which can be
used to facilitate our analysis. Specifically, suppose A,
and A, are two HMM parameters with ergodic Markov
chains, or equivalently, its transition matrix is both
aperiodic and irreducible. Then it was shown that the
following quantity always exists [18]:

DEEN = (32)

1
Hy, (Ag) = lim ~1og(P(x | A)

where x denotes samples up to time » from the HMM
with parameter A;. Note H, (};) always exists for
HMMs with ergodic Markov chains as it actually
defines the entropy rate (ergodicity allows us to
replace time average with ensemble average). Hence
the following limit always exists:

. 1 P(x| )
Jim g,(A1,A0) = lim —log (m)

=H, (A}) = H, (A). (33)

The existence of such a quantity was also
demonstrated later in [11] through extensive numerical
examples. It is easy to notice that the limit of

8&n(Ag, Ay) is essentially the asymptotic per sample
CUSUM statistic used in our proposed scheme, with
A; and A being the parameters of the HMMSs under
hypotheses K and H, respectively. Thus it plays a

role similar to that of E{g(x)} in (32) with an IID
sequence, provided £ is large enough. A typical plot
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Fig. 3. Typical behavior of g,(Ag,Ay) from (33), of HMM under
transient-present hypothesis, plotted against n. Example is discrete
HMM in Section VA, whose nonlinearity stabilizes around 0.068.

of g,(A,Ay) is shown in Fig. 3 using the discrete
HMM example of the next section.

Further, by invoking ergodicity, we see H, (X)) —
H, (X;) defines exactly the KL distance between two
HMMs. We comment here that T is also a function
of the KL distance between the two HMMs although
the relationship is not as straightforward as with D.
This justifies the use in [4] of KL distance as a (weak)
performance measure of Page’s test.

Knowing that T is exponential while D is linear
in h, we can conclude, as in the IID case, that T is
asymptotically exponential in D. Thus we can define,
as in the IID case, the asymptotic efficiency of a
Page’s test

n = lim log(7)/D. (34)

Naturally 7 is a means to compare detection strategies:
the larger 7, the better. But perhaps more important is
that fact that we can define it, or rather that the limit
is non-trivial. The log-linear behavior is why Page-like
procedures work. If an operating point (%) yields false
alarms on average every million samples, and this is
deemed too high, then it is possible to raise this to a
false alert once in 10'? samples at the expense only of
an approximate doubling in delay to detection.

V. EXAMPLES

In this section, several examples illustrate the
application of the proposed scheme. The first example,
between two discrete HMMSs, serves for illustration
due to its simplicity. Nonetheless, discrete HMMs
have very important application in speech processing,
where the underlying Markov state usually represents
individual phonemes. The transition between different
states (phonemes) is governed by phonological rules
of each word or phrase. Detection of the change from
one HMM to the other serves as a preliminary step
in speech segmentation, and its effectiveness greatly
affects further processing.
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The second example is that involving
increased-variance Gaussian-bursts, as discussed in
Section I. The emphasis in this example is how to use
an HMM to capture some important features of the
transient signal in order to achieve better detection

performance.

The last example is on the detection of a
narrowband transient whose center frequency varies
slowly in time. Here each state of the Markov chain
represents an individual frequency band (could
be the frequency bin output of a discrete Fourier
transform (DFT), or the output from a bank of
narrowband filters). The slow-varying nature of the
center frequency results in frequency contiguity in the
time-frequency domain. This allows us to represent
the “wandering” of the frequency line among different
frequency bands as transitions among different states,
thus setting up the model for the application of the
proposed procedure.

A. Discrete HMMs

The example is taken from [11] where the
two HMMs that need to be distinguished have the
following parameters:

r0.800
0.070
0.050 0.140 0.80 0.01
£0.001 0.089 0.11 0.80
r0.30 0.40 0.20 0.10
0.50 030 0.10 0.10
0.10 0.20 0.40 0.30
L0.40 0.30 0.10 0.20
r0.400 0.250 0.15 0.20
0.270 0.450 0.22 0.06
0.350 0.140 0.40 0.11
L0.111 0.119 0.23 0.54
r0.10 0.15 0.65 0.10
0.20 030 0.40 0.10
0.30 030 0.10 0.30
10.15 025 040 0.20

The stationary distributions could be computed as
follows:

H :7my=[0.2042 0.3484 0.3266 0.1208]
K :m;=[02931 0.2430 0.2459 0.21807.

0.05
0.12

0.00
0.06

0.150

0.750
H: A

B,

An example test statistic is shown in Fig. 4. The
transient HMM, specified by A; and B, starts at
n = 100 and ends at n = 500. It can be seen that at
n = 100, the test statistic responds promptly to the
occurrence of the transient HMM, while after n = 500,
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Fig. 4. Detection between four-state HMMs. Transient HMM
starts at #n = 100 and ends at n = 500. CUSUM statistic is seen to
respond well to appearance of new HMM.

the decrease of the CUSUM statistic reflects the end
of the transient.

Next we study the performance in terms of
ARL using both numerical simulation and the
approximation method as described in Section IV. B,
the average value of test statistic of individual SPRT
that ends below the lower threshold is found to be
0.801. Also, the asymptotic value of the nonlinearity
8,(A\1, o) defined in (33) was found to be 0.068. We
plot out the approximation of both T and D against h
together with the simulation result. (See Fig. 5.) As
expected, the prediction for T is pessimistic due to the
approximation. On the other hand, the prediction for
D conforms well with the simulation.

B. Increased Variance Gaussian Transients

1) The Model: 1In this section, we study in
some detail the example of increased-variance
Gaussian-bursts transient. In this model, white
Gaussian noise with variance o2 is always present.

If a transient occurs (i.e., if n > n; in (7)) then added
to this is a sequence of independent random variables
having variance o,z (if u(n) = on) or O (if u(n) = off).
The hidden sequence {u(n)} forms a Markov chain,
as discussed below; but provided u(n) = u(n — 1) with
high probability, a transient appears as “clumps” of
increased-variance observations.

We note that the durations of both quiescent and
active times are assumed random. For any specific
transient, though, it is usually reasonable to assume
we have access to a priori information regarding the
average duration time of both transient-active and
-quiescent period. Due to the sampling in practice,
such average duration is usually represented by an
average number of samples of each state, which we
denote by n,, and n_g, respectively. Further, define
p=1/n, and g = 1/n. We propose the following
transition matrix for the switch between on and off

state 1
A:[ p p].

35
g l-g (35)
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T (in logarithm)

(b)

Fig. 5. ARL for four-state HMM example. (a) T as function of
h. (b) D as function of h.

Note the stationary distribution is
[ q q ] — [ Ron Pott :l
p+q’p+q non+noff’non+noff
which are exactly the average number of samples each

state is occupied.

2) Comparison with Standard Page Test: As
mentioned in Section I, for increased-variance
Gaussian-bursts, a standard Page test could be used
for detecting such a transient without using the
relationship between neighboring bursts. In [28], it
was demonstrated that the standard Page’s test was
among the best detectors for such transients. In this
section, we investigate the performance gain over the
standard Page detector achievable by incorporating the
structural relationship between different bursts using
HMMs.

We first use both the HMM-based Page test and
standard Page test in a blockwise fashion.? That is,

3Such a realization is not consistent with the philosophy of Page’s
test, nor should it be implemented this way in practice. Nonetheless,
it provides an easy way to compare Page’s test to those detectors
admitting only blockwise processing such as the energy detector.
Further, the resulting receiver operating characteristic (ROC) curve
provides illustration of performance gain.
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TABLE I
Gaussian Burst Transients to be Studied

Transient A Transient B Transient C

Signal variance o2 1 1 1.5
Per sample SNR 0dB 0 dB 1.76 dB
Number of bursts 8 15 8

jprobability of detaction
L

——  HMM based Page test|
i e Standard Page Test

0k . . o

w0t 10 107 107 10’ 10°
probability of false alamm

Fig. 6. ROC curves for Gaussian-bursts example. Three pairs of
curves correspond to transients A, B, C of Table I, referenced
from bottom to top.

we first divide input data sequence into data blocks.
Within each block, we run the standard Page test and
the HMM-based Page test, and declare a detection if
the CUSUM statistic exceeds the threshold within the
block. In our simulation, the block size is N = 512.
The average burst length and quiet period are n,, = 8
and n = 10 samples, respectively, resulting in a
transition matrix

~ [0.875 0.125}
~10.100 0.900]°

The noise variance o2 = 1. We study three different
transients with different signal variances and number
of bursts within each block. These three transients are
listed in Table I.

The standard Page test uses the LLR nonlinearity
to update the CUSUM statistics. Such a nonlinearity is
easily shown to be

1 1 0,
_2f Ty g
0= (57~ 57) - (2)

where 02 = g2 + 02 is the variance of noise plus
transient samples. For the HMM-based Page detector,
we use the algorithm described in Section HIC.

- A typical example of such a transient is shown
in Fig. 1 using parameters specified by transient
C in Table L. Fig. 1(a) is the transient signal and
Fig. 1(b) is the noisy observations within a block.
The ROC curves for the transient models using both
the standard Page procedure and the HMM-based
procedure are shown in Fig. 6. In all three cases
the HMM-based Page test exhibits significant
improvement over the standard Page test. The

(36)
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Probability of detection

Fig. 7. Probability of detection as function of ¢ . Here 1 is
fixed at 8 throughout simulation and false alarm rate is kept at
0.00s.

underlying reason that the HMM-based Page test
outperforms the standard Page test is that the “quiet”
period is built into the model itself to account for the
cyclic behavior of the transient bursts.

To study further the reason for this performance
divergence, we simulate the detection performance
of both detectors as a function of n g for a fixed
n,, = 8 and a given false alarm rate. In Fig. 7, in
which the false alarm is fixed at 0.005, we see first
that the performances of both detectors degrade as
n.g increases. This is not surprising; perhaps less
expected is that the performance divergence between
the standard Page detector and the HMM-based Page
detector widens as n; increases. The reason of this
behavior can be explained as following. Denote f,(-)
and f,(-) as pdfs of Gaussian distributed random
variable with variance 02 and o2 respectively. Then
the nonlinearity of the standard Page test is simply

H &)

are(X) =10 (——

8pag, g 5®

which can be further simplified to (36). Now write the
forward recursion of o/, defined in (27), as

(37

ay(Day; + al(2)ay,
a(1) + al(2)

aj(D)ay, + af(2)ay,
ai(1) + al(2)

c“;+l(l) =

f1 (x)
(38)

o, (2) = £®

where g;; are elements of the transition matrix A.
Using the fact that a;; + a;, = ay; +ay, = 1, we can
show that the coefficients of f(x) and f;(x) add to
unity. Through substitution of (38) to (28), we get the

nonlinearity used in the HMM-based Page test

Afi)+ (1= )\)fz(x)>
S ) 39)

8hmm page(x) = lOg (
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Fig. 8. T versus D for Gaussian-bursts example.

in which A varies with time. The key, therefore, is

that the HMM-based Page procedure uses an update
appropriate for detection of Gaussian mixture statistics,
rather than a single (increased-variance) Gaussian.
Thus, lower variance samples from a “quiet” period
have less effect; further, since a,, = 1/t (cf., (35)), it
is reasonable that the weight on the increased-variance
Gaussian (X in (39)) decreases with an increase in

the average time between bursts ¢_g. Thus an HMM
based Page scheme is more ready to accept a series of
low-variance observations (a “quiet” period between
bursts) as just that, rather than as evidence refuting the
presence of a transient.

A more natural performance measure for the Page
test (both standard and HMM-based) is in terms of
ARL. In Fig. 8 we present the simulation result of
T versus D for both standard Page’s test as well as
the HMM-based Page detector. The advantage of the
HMM-based Page detector is obvious. Also plotted
is the approximation using the method described in
Section IV which gives a lower bound of the ARL
curve. Note that for the Gaussian bursts transient
and a standard Page test, the log linearity of T' with
respect to 4 need not be true. This is so because
the assumption intrinsic to the standard Page test,
that the samples be identically distributed for the
transient-present data, is no longer valid.

C. Detection of Slowly Varying Narrowband Transients

The idea of modeling a slowly varying frequency
line via an HMM appears to be first due to Barrett
and Streit [2, 24]. In their work, a frequency line is
assumed to be a constant-amplitude sinusoid with
slowly varying frequency, buried in Gaussian noise.
The output envelope of a narrowband filter (e.g.,
DFT) therefore assumes either a Rayleigh (noise
only) or a Rice (noise plus transient) distribution. Qur
model is slightly different in that we do not assume
constant amplitude for the frequency line. Instead, we
assume that the transient is a narrowband Gaussian
process, an assumption more in line with [7, 15, 25].
Variation of the center frequency could arise from the
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Doppler shift due the motion of the transient source.
Thus the slowly varying nature, or contiguity, of

the frequency is governed by the continuity of the
target motion. If we pass such a narrowband Gaussian
transient buried in Gaussian noise through a bank

of narrowband filters, and we take the magnitude
square of each filter output, we then have the
following scenario. The observations are now a vector
sequence with the dimension equal to the number

of narrowband filters. Under H, our observations

are an IID vector sequence with each element in the
vector being unit-exponentially distributed (assuming
appropriate normalization). Under K, there exists

one element to each vector that has an exponential
distribution with increased scale parameter 1 + SNR
(signal-to-noise ratio), i.e., whose pdf is written as
Pz, (k)) = (1/(1 + SNR))* exp(—z,(k)/(1 + SNR)).
Such a cell corresponds to the frequency band in
which the transient resides. The approach is to model
the transient index k as a Markov chain with a certain
transition probability A. Such a transition matrix
should have the property that those elements at or
near the diagonal have larger values to account for
the “slowly varying” nature of the signal. In [24]

the authors used a Gaussian approximation; that is,
each row of the transition matrix follows a Gaussian
density centered at its diagonal element. This is
based on the assumption that the frequency bin of the
transient at the next time slot is Gaussian distributed
with mean value equal the current frequency bin
occupancy. It was found however, that the detection
performance is insensitive to the transition matrix as
long as the large diagonal (and near diagonal) element
requirement is satisfied.

We remark that the authors in [2, 24] obtained an
observation matrix by setting a threshold for each
individual frequency bin, and therefore transformed
the problem into a discrete HMM. The advantage
of such an approach is its simple implementation.
However, the thresholding operation results in a loss
of information contained in the output amplitude.

In [3], such amplitude information was kept only

for those bins that pass the threshold. Treating the
transient as a continuous HMM, i.e., using a vector
of density functions instead of the observation matrix
obtained via thresholding, enables us to fully exploit
the information carried in the magnitude of the DFT
outputs.

An example is shown in Fig. 9. The total number
of narrowband filters is taken as 8, thus resulting in
an §8-state Markov chain. The transition matrix is
obtained using a standard Gaussian approximation
with appropriate normalization. We choose SNR = 1.
The frequency occupancy of the narrowband: transient
is shown in Fig. 9(a). The transient starts at n = 30.
Fig. 9(b) is a time-frequency plot of the simulated
magnitude-square output from the bank of narrowband
filters which assumes either unit exponential or
exponential with scale parameter 2 depending on
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whether the transient is present. It is hard to discern
the frequency line from these data. The CUSUM
statistic using the HMM-based Page test, however, can
easily pick up at the start of the transient, as indicated
in Fig. 9(c).

We further compare the performance of our
detector with the maximum power detector (MPT)
which has better performance than the HMM-based
detector of [2]. The MPT statistic simply sums up the
maximum output bin from each vector output. Such
a detector could be derived from a GLR perspective
with the assumption that at any time instant, one and
only one frequency bin could contain the possible
transient. The superiority of the HMM-based detector
over MPT is obviously seen from the ROC curves
in Fig. 10. The transient used is the same as those
depicted in Fig. 9. Such performance gain, however,
is at the cost of increased computational complexity.

In the above comparison we have compared
blockwise processing (the MPT detector) with a
sequential method (our HMM-based Page detector).
For a comparison which is perhaps more appropriate,
we develop the Page detector using the maximum
power output by getting the optimal LLR nonlinearity,
which turns out to be

n—11—eY0/m

_ Ho Ly@)/o—y(®)/m
) =log | —— -
g Og{ o e

1 -0/,

where ¢ is the time index and y(f) is the maximum
bin output (see the Appendix). The Page detector is
therefore simply the threshold testing of the following
statistic,

S, = max(0,S,_, + g(®)). (40)

The dotted line in Fig. 10 is in fact obtained using

S, in (40) in a blockwise fashion, which has inferior
performance to both the HMM-based Page detector
and MPT detector. The simulation result regarding the
ARLs of the MPT and HMM-based Page detectors
are shown in Fig. 11: the HMM-based Page detector
clearly outperforms the Page detector based on the
MPT statistic.

VI.  SUMMARY

The problem studied in this paper is how to
quickly detect an HMM transient. By decomposing
a Page’s test to a repeated SPRT, we were able to
derive a CUSUM-like procedure for the detection of
a distributional change with dependent observations,
to justify it, and to approximate its performance
as parametrized by the threshold. Utilizing the
forward variable of an HMM, such a procedure was
applied to HMM transients. We have investigated in
detail its application to several important transient
detection problems. Our emphasis is to stress the
usefulness of HMM in capturing certain features
of the transient that can be utilized to improve
the detector performance. The advantage of the
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Fig. 9. Detection of narrowband transient with slowly varying center frequency. (a) Frequency occupancy of transient. Frequency line
starts at 30th sample. (b) Typical plot of frequency bin output with SNR = 1. Frequency line hard to distinguish from noisy background.
(c) CUSUM statistic of HMM-based Page detector. As expected, it responds promptly at occurrence of frequency line.

HMM-based CUSUM procedure was confirmed by
simulation.

APPENDIX. DERIVATION OF PAGE DETECTOR
BASED ON MAXIMUM DFT OUTPUT FOR
NARROWBAND TRANSIENTS

Denote by x(¢) the magnitude square DFT outputs
at time ¢. The statistic of interest is then

Y(t) = max(x(t))

where we assume x(¢) is of size n. Under the
noise-only hypothesis, x(t) follow identical

exponential distributions with parameter y,. Under the
noise-plus-narrowband-signal alternative, one of the
DFT bin outputs follows an exponential probability
law with increased mean value y,, while the rest have
parameter fi,. Our purpose is to find the LLR of Y (¢).
Under H, the statistic is simply the maximum of
n exponentially distributed random variables whose
distribution function is easily obtained as

P(T, <y) =[P < (41)

i=1

= (1 — e V/royn, (42)
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Fig. 10. ROC curves of both HMM-based Page detector and
MPT for detection of narrowband transient as shown in Fig. 9.
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Fig. 11. ARL curves of both HMM-based Page detector and
MPT-based Page detector. Superior performance of HMM-based
Page detector lies in hidden Markov modeling that captures
continuity of center frequency of narrowband transients.

The probability density is obtained by taking the
derivative:

qu ) =n(l— e—y/uo)n—l [_l_e-y/uo] )
Ho
To find the density function of the statistic under
K, note that it is essentially the maximum of the
following two random variables, ¥} and Y,, i.e., ¥ =
max(Y},Y,) with ¥, following
1
) = (1 = eyt | Lo
Ho

and ¥, exponential with parameter u,. Hence the
distribution function for Yy is

P(Y <y)=(1—emoy=(1 /i),
The pdf is therefore

o) = (1 — eYhoyr=2 [<n S 1)1 = eVl )uie_y/‘“’
0

+(1- e—y/uo)ie—)’/m )
My
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Now the LLR is readily solved as

n—11—er0/m

= L R o (IR TG Y/ SR GV
gy®) =log PR By e .

K

Hence the Page detector is the just the CUSUM of the
above nonlinearity clamped at 0, i.e.,

S, = max(0,S,_, + gy(®).
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