
A GLRT FOR RADAR DETECTION IN THE PRESENCE OF
COMPOUND-GAUSSIAN CLUTTER AND ADDITIVE WHITE GAUSSIAN

NOISE

Bin Liu, Biao Chen

Syracuse University
Dept of EECS, Syracuse, NY 13244

email : biliu{bichen}@ecs.syr.edu

James H. Michels

AFRL/SNRT
26 Electronic Pkwy, Rome, NY 13441

email: james.michels@rl.af.mil

ABSTRACT
This paper addresses the detection problem for a sig-
nal with constant, but unknown amplitude in distur-
bance containing compound-Gaussian clutter plus ad-
ditive white noise. Specifically, a new generalized
likelihood ratio test (GLRT) is presented for the
clairvoyant case. Previously developed GLRT ex-
pressions addressing the compound-Gaussian clut-
ter problem have considered the ‘clutter only’ case
assuming negligible additive white noise power. Per-
formance evaluation is considered in the context of
space-time adaptive processing (STAP) for an air-
borne radar application. We show improved perfor-
mance of the new GLRT over previously developed
tests.

1. INTRODUCTION

Space-time adaptive processing (STAP) has had a
significant impact on advanced airborne AMTI and
GMTI radar systems. Joint processing of spatial-
temporal observations significantly improves the out-
put signal-to-interference plus noise (SINR) power
ratio that in turn provides improved detection per-
formance.

Within the last decade, there has been consid-
erable interest in the STAP detection problem in
the presence of compound-Gaussian clutter [1, 2, 3,
4, 5, 6]. For this clutter model, the clutter vec-
tor c is expressed as c =

√
sg where g is com-

plex Gaussian with covariance matrix Σ and s is a
non-negative scalar, unknown random clutter com-
ponent (also called texture component) statistically
independent of g. In [1, 2], the multichannel radar
detection problem was formulated as a binary detec-
tion problem; i.e., given complex observation data
vector x where x ∈ CJN (J channels, N pulses), we
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choose between the following hypotheses

H0 x = c =
√

sg
H1 x = av + c = av +

√
sg (1)

where v is the steering vector and a is the unknown
signal amplitude. It is worth mentioning that a
widely referenced class of random processes, the so-
called spherically invariant random process (SIRP)
is a special class of compound-Gaussian by impos-
ing a parametric model on the scalar (spiky) term
which is assumed to remain constant for a coher-
rent processing interval (CPI). Examples for SIRP
clutter [7, 8] include the K distribution and Weibull
distribution for specific shape parameter values.

A generalized likelihood ratio test (GLRT) for
the detection problem in (1) was developed in [2]
which resulted in the following test statistic

Γ1 =
|xHΣ−1v|2(

xHΣ−1x
) (
vHΣ−1v

) (2)

where Σ = E[ggH ]. This statistic is herein termed
as the normalized matched filter (NMF) due to the
fact that it contains a normalizing data dependent
quadratic term to the well-known matched filter de-
tector for Gaussian disturbances. We note that the
same statistic was derived in [1] as an asymptotic
optimum test for compound-Gaussian disturbance
modeled as SIRP. The performance of adaptive ver-
sions of (2), known as the NAMF, was presented in
[4].

Alternatively, an adaptive test called the adap-
tive coherence/cosine estimator (ACE) was devel-
oped for a Gaussian disturbance model with a scale
change between test and training data and shown
to be invariant [9, 10, 11, 12]. Specifically, for a
Gaussian disturbance vector d with covariance ma-
trix Rd, x ∼ CN(av, η2Rd) under H1 and x ∼
CN(0, η2Rd) underH0, while the training data zk ∼
CN(0,Rd) for k = 1, · · · , K. Thus the variances of
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the training and test data differ by the factor η2.
For this model, the form of the ACE test is identical
to (2) except that Σ is replaced by the maximum
likelihood (ML) estimate; i.e., the sample covari-

ance matrix R̂d
�
= 1

K

∑
k zkzH

k . The ACE test was
noted to be CFAR for Gaussian processes with re-
spect to scale change, a direct result of its invariance
property. For the problem involving the compound-
Gaussian clutter modeled as an SIRP with power or
scale changes over all range cells, R̂d is no longer the
ML estimator and no optimality claims for the ACE
test can be made [13, 14].

In this paper, we consider the more general bi-
nary detection problem in which the observation data
vector x also contains additive white noise. We show
through numerical examples that the NMF derived
using the clutter-only model suffers significant per-
formance loss in terms of the CFAR property and de-
tection probability in the presence of additive white
Gaussian noise. Motivated by this, we develop a gen-
eralized likelihood ratio test (GLRT) for this prob-
lem.

The paper is organized as follows. In the next
Section, the detection problem with both compound
Gaussian and white Gaussian disturbance is pre-
sented and a generalized likelihood ratio test is devel-
oped. In Section III, we compare the detection per-
formance of the new GLRT method with the NMF
statistic along with some discussion on the CFAR
property. We conclude in Section IV.

2. A GLRT FOR DETECTION WITH
BOTH COMPOUND-GAUSSIAN

CLUTTER AND GAUSSIAN NOISE

The detection problem with disturbance containing
compound-Gaussian clutter and additive white Gaus-
sian noise can be posed as the following hypotheses
test:

H0 x = c+ n
H1 x = av + c+ n (3)

where n ∼ CN (0, σ2I); i.e., n is complex white Gaus-
sian noise assumed independent of the clutter c =√

sg. Therefore the disturbance covariance matrix
isM = sΣ+ σ2I. For this problem, the NAMF and
ACE tests also lose the CFAR feature as reported in
[13, 14].

For the detection problem specified in (3), a GLRT
can be written straightforwardly as

Γ2=
maxa,s,σ2 f(x|a, s, σ2;H1)

maxs,σ2 f(x|s, σ2;H0)

=
maxa,s,σ2

1
‖M‖ exp

�−(x− av)HM−1(x − av)
�

maxs,σ2
1

‖M‖ exp [−xHM−1x]
(4)

Thus, we must now solve for the maximum likeli-
hood estimates of all parameters under the two hy-
potheses. This is addressed next.

For STAP applications with compound-Gaussian
clutter, while the clutter texture power at the test
cell may be unknown, the additive white Gaussian
noise power may be available from the operational
system. We therefore distinguish the following two
cases: (1) σ2 known and (2) σ2 unknown. As in [2],
we assume that the clutter covariance structure, Σ,
is known.

2.1. Known σ2

For the known noise power case, we assume without
loss of generality that σ2 = 1 as the observations can
always be properly normalized. Therefore we need
to solve the ML equations for s and a under the
H1 hypothesis and for s under the H0 hypothesis.
The estimators are developed in Appendix A. They
amount to solving a set of nonlinear equations that
are summarized below.

• H1 hypothesis:

Tr(ΣM−1) = (x− av)HΣM−2(x− av)

a =
vHM−1x
vHM−1v

• H0 hypothesis:

Tr(ΣM−1) = xHΣM−2x

2.2. Unknown σ2

If σ2 is unknown, we also need to find its ML esti-
mate under H0 and H1. The estimates for s and a
remain the same as noted above. The following ML
equations result for the estimate of σ2:

• H1 hypothesis:

Tr(M−1) = (x− av)HM−2(x− av)

• H0 hypothesis:

Tr(M−1) = xHM−2x

It can be shown that the solutions of these equa-
tions are unique under the assumption that clutter to
noise power is large. Then numerical procedures can
be constructed easily to solve the above equations to
obtain the ML estimates. These ML estimates are
then used in (4) to obtain the GLRT statistic for
detection.
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3. SIMULATION RESULTS

3.1. Performance comparison

In this section, we use numerical examples to com-
pare the proposed GLRT method with the NMF de-
veloped in [1, 2]. In the first example, we use two
channels, four pulses, and the average clutter/noise
power ratio CNR = 40dB. The output signal to
interference and noise power ratio (SINR), defined
as 10log10|a|2vHM−1v, is fixed at 6dB. The clut-
ter assumes a K distribution with a shape parame-
ter α = 0.1. The clutter ridge lies along the diago-
nal in the normalized Doppler-spatial frequency do-
main. The target signal is located at 0◦ azimuth and
0.15 normalized Doppler frequency in the spatial-
temporal (Doppler) domain and the clutter has one
lag tempral correlation ut = 0.999.

Fig. 1 gives the ROC curves of the two statistics,
namely the NMF and the proposed GLRT statistic.
For the cases of both known σ2 and unknown σ2, the
proposed GLRT of (4) outperforms the NMF of (2)
by a significant margin. In the second example, we
use a two channel thirty two pulse example which
is otherwise identical to the previous case. Clearly
from Fig. 2, a similar performance advantage of the
GLRT is observed. The only difference is that the
GLRT with known σ2 and unknown σ2 have almost
identical performance for this higher dimensional ex-
ample. This is due to the improved estimation per-
formance for σ2 resulting from the increased data
size in this higher dimension case.

Fig. 3 gives the probability of detection versus
SINR for a fixed probability of false alarm at 10−3.
Clearly, the proposed GLRT outperforms NMF, es-
pecially in the low SINR region.

3.2. Dicussion on the CFAR property

In the absence of white Gaussian noise, the NMF
of (2) has the desired CFAR property, i.e., the false
alarm rate is independent of the covariance struc-
ture Σ and the clutter power term s. In the context
of K distributed clutter, the CFAR with respect to
power variation implies that it is CFAR with respect
to the shape parameter. In Fig. 4, the probability
of false alarm as a function of the shape parame-
ter is obtained via simulation for a threshold chosen
such that the nominal false alarm rate is 10−3 in the
clutter-only case. The average CNR is again fixed at
40dB. Clearly, the probability of false alarm changes
significantly as a function of the shape parameter in
the presence of additive noise.

In Fig. 5, using the same parameters as in the
first example, the probability of false alarm of the

proposed GLRT is given for a fixed threshold for the
σ2 known case. Notice that if the clutter texture
term s is perfectly known, then the problem speci-
fied in (3) is a simple Gaussian clutter with known
covariance matrix M and the detection statistic in
(4) is reduced to the matched filter for Gaussian dis-
turbance. Hence, it is clearly CFAR with respect to
s. The fact that we have to estimate s changes the
CFAR property as shown in Fig. 5, most noticeably
in the region with very small shape parameter. In
this particular example, we notice that the proposed
GLRT is still CFAR with respect to the shape pa-
rameter when it is greater than 0.1. The reason is
as follows. The ML estimate of s is likely to be very
accurate for large CNR. However, at very low shape
parameter, the variance of the clutter texture term s
becomes large. Therefore, even if the average CNR is
kept at 40dB, the likelihood of having smaller CNR
increases. This results in a larger error variance of
estimate of s which in turn affects the CFAR prop-
erty of the proposed statistic. Further analysis with
respect to the CFAR property will be performed in
the future.

4. CONCLUSIONS

In this paper, we consider the detection problem for
the case of unknown, constant signal amplitude in
the presence of compound-Gaussian clutter plus ad-
ditive white noise. Here, we address the case of
known covariance for the Gaussian clutter compo-
nent (speckle component), but unknown texture pa-
rameter. A GLRT method is derived for this prob-
lem and shown to outperform the NMF developed
for the clutter-only case, although at the expense
of increased computational complexity. We also ob-
serve, through numerical examples, the NMF loses
CFAR due to the presence of additive white noise
while the proposed GLRT retains the CFAR prop-
erty for a wide range of shape parameter values.

A. ML PARAMETER ESTIMATION FOR
THE KNOWN NOISE POWER CASE

For simplicity, we assume σ2 = 1 as the observations
can be properly normalized. We derive the ML es-
timates for the unknown parameters under the two
hypotheses (s under H0, s and a under H1).

• Under H0, we have the likelihood function:

L(s;x) ∝ 1
‖M‖ exp

[−xHM−1x
]

Since Σ is assumed to be positive definite and
Hermitian, Σ can be diagonalized by a unitary
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transformation (a.k.a., eigen decomposition)

Σ = UΛUH

where U is a unitary matrix and Λ is a diag-
onal matrix whose diagonal elements, say, λi

for i = 1, · · · , N , are real positive. Then
M = U(diag(sλ1 + 1, · · · , sλN + 1))UH

We get

‖M‖ =
N∏

i=1

(sλi + 1)

M−1 = U
(

diag

(
1

sλ1 + 1
, · · · , 1

sλN + 1

))
UH

Therefore

∂‖M‖
∂s

=
NX

i=1

λi‖M‖
sλi + 1

= Tr(ΣM−1)‖M‖

∂M−1

∂s
=U

�
diag

�
λ1

(sλ1 + 1)2
, · · · , λN

(sλN + 1)2

��
UH

=ΣM−2

where Tr(A) is the trace of matrix A. By
taking the derivative of L(s;x) with respect to
s and setting it to 0, we get

Tr(ΣM−1) = xHΣM−2x

Numerical procedure can be easily constructed
to get the ML estimate for s.

• Under H1, the likelihood function is

L(a, s;x)∝ 1
‖M‖ exp

[−(x− av)HM−1(x− av)
]

and by taking the derivative of L(a, s;x) with
respect to s and a and setting them to 0, we
can get

Tr(ΣM−1) = (x− av)HΣM−2(x− av)

a =
vHM−1x
vHM−1v

Solving these two equations using numerical
solution, we can get the ML estimates for s
and a.
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Fig. 1: Performance comparison between the
two GLRT (Γ1 and Γ2) in the
presence of K distributed clutter and
additive white Gaussian noise.
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Fig. 2: Same as in Fig. 1 except that
N = 32 instead of 8.
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Fig. 3: Probability of Detection as a
function of SINR.
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Fig. 4: Flase alarm rate as a function of the
shape parameter in the K clutter and
additive white Gaussian noise for Γ1.
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Fig. 5: Flase alarm rate as a function of the
shape parameter in the K clutter and
additive white Gaussian noise for Γ2.
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