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Abstract — In this paper we exploit receiver diver-

sity for blind channel estimation for OFDM systems

with cyclic prefix. The developed channel estimation

algorithm has the following advantages compared with

existing blind methods: a) It is data efficient — the

proposed algorithm can be implemented using a sin-

gle OFDM block; b) It is computationally efficient —

only a single singular value decomposition is required

for channel estimation; c) It is symbol independent —

unlike many existing algorithms, there is no restric-

tion on the input symbol constellation. Cramer-Rao

lower bound for the channel estimation is derived to

evaluate the performance. We show through numer-

ical examples that the proposed algorithm compare

favorably with an existing subspace algorithm.

I. Introduction

Because of its resistance to multipath channel fading and
spectral efficiency, orthogonal frequency division multiplexing
(OFDM) has attracted increasing interest in recent years as
a suitable modulation scheme for broadband wireless commu-
nication systems, including digital broadcasting and wireless
LAN applications.

For coherent OFDM system, reliable estimation of the time
dispersive channel is key to achieve the desired performance
gain. Training symbol based OFDM method usually requires
extra +20% bandwidth therefore consumes too much precious
resources. On the other hand, many existing blind OFDM
channel estimation is statistical in nature (e.g., second or-
der statistics based as in [1, 2, 3, 4]) which usually requires
large number of data blocks. Further, it has limited applica-
tion in wireless channel involving high mobility (large Doppler
spread) as the channel may vary from block to block. Deter-
ministic blind channel estimation, on the other hand, is more
data efficient. For example, the finite-alphabet based method
in [5] can be implemented using only a single data block. How-
ever, the developed algorithm is mostly limited in practice to
PSK modulation.

Receiver diversity is another important resource that can
be exploited in OFDM channel estimation. In [6, 7] multiple
receive antennas are used for channel estimation for OFDM
systems without cyclic prefix (CP). In this paper, we also ex-
ploit receiver diversity in the form of either multiple antennass
or oversampling to allow blind channel estimation for the CP
based OFDM systems. The resulting algorithm is simple yet
effective. Without restrictions on the input symbol constella-
tion, the proposed method is both data efficient and compu-
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tationally efficient. We also present some preliminary result
on identifiability issue.

The organization of the paper is as follows. In the next
section we introduce the signal model with receiver diversity.
In section III, we present a simple blind channel estimation
algorithm using channel diversity. Section IV includes results
on the identifiability. Cramer-Rao lower bound (CRLB) for
the channel estimation is derived in section V while simulation
results are given in section VI. We conclude in section VII.

The following notations are frequently used in this paper.
The DFT matrix W can be partitioned as

W = [WL|WN−L] (1)

where L is the length of channel impulse response which is
assumed known a priori in this paper, WL is the matrix com-
posed of the first L columns of W, and WN−L contains the
remaining N − L columns. Further we can write

WL =

2
64

uH
1

...
uH

N

3
75 (2)

where each uk is an L by 1 vector. We use bold face capi-
tal letters to denote matrices while bold face small letters to
denote vectors.

II. OFDM Signal Model with Receiver
Diversity

In OFDM systems with N subcarriers, N information
symbols are used to construct one OFDM symbol. Specifi-
cally each of the N symbols is used to modulate a subcarrier
and the N modulated subcarriers are added together to
form an OFDM symbol. Orthogonality among subcarriers
are achieved by carefully selecting carrier frequencies such
that each OFDM symbol interval contains integer number
of periods for all subcarriers. Using discrete-time baseband
signal model, one of the most commonly used scheme is
the IDFT-DFT (inverse discrete-time Fourier transform —
discrete-time Fourier transform) based OFDM system. Guard
time, which is cyclically extended to maintain inter-carrier
orthogonality in the presence of time-dispersive channel, is
inserted that is assumed longer than the maximum delay
spread of the channel to totally eliminate inter-block interfer-
ence [8].

The discrete-time complex baseband OFDM signal is

s(n) =
1√
N

N−1X
k=0

dkej2π kn
N



where each dk is used to modulate the subcarrier ej2πk/N .
Receiver diversity for OFDM systems can be achieved ei-

ther by employing multiple receiver antennass or via oversam-
pling [9]. In both cases, the discrete-time baseband received
signals can be written as

x1(n) =
1√
N

N−1X
k=0

H1(k)dkej 2πkn
N + v1(n)

x2(n) =
1√
N

N−1X
k=0

H2(k)dkej 2πkn
N + v2(n)

where Hi(k) is the channel frequency response corresponding
to ith channel at subcarrier k and v1(n) and v2(n) are both
additive white complex Gaussian noise and are uncorrelated
with each other. The above signal model can be written in a
compact matrix form as

x1 = WHH1d+ v1

x2 = WHH2d+ v2

where W is the DFT matrix as in (1), Hi = diag(hi) with

hi = [Hi(0), . . . , Hi(N − 1)]T (3)

That is, Hi is a diagonal matrix with diagonal element Hi(k);
and d = [d0, . . . , dN−1]

T is the symbol vector. Taking DFT
at the receiver, we have the equivalent frequency domain ob-
servation

y1 = Wx1 = H1d+ z1

y2 = Wx2 = H2d+ z2

where z1 and z2 is statistically identical to v1 and v2 because
of the unitary property of W, i.e., z1 and z2 are both white
complex Gaussian and are uncorrelated with each other. Blind
channel estimation aims to retrieve both H1 and H2 without
any knowledge about d. Clearly, a direct approach to estimate
the frequency response matrix Hi is not feasible — the num-
ber of unknowns (6N from the three N × 1 complex vectors
h1, h2, and d) exceeds the number of observations (4N from
the two observation vectors y1 and y2). However, we note
that the actual degrees of freedom associated with H1 and
H2 are far smaller than N , the OFDM symbol length. This is
because the frequency response is simply the DFT of the chan-
nel impulse response which is usually assumed to be shorter
than the length of the cyclic prefix hence is far smaller than
N . With this observation, we can rewrite the signal model as

y1 = Dh1 + z1 = DWLg1 + z1

y2 = Dh2 + z2 = DWLg2 + z2
(4)

where D = diag(d), i.e., it is the diagonal matrix with diago-
nal element dk, hi is as in (3), and gi is the impulse response
for the ith channel and is of length L. Here the total number
of unkown is 2× (N +2L) which is smaller than 4N , the num-
ber of observations. Again, we note here that in this paper we
deal exclusively with the case of known channel length L.

III. Blind Channel Estimation

A Noiseless Case

Given the signal model in (4), we first consider the channel
estimation in the noiseless case. We emphasize again that
by converting the channel estimation from frequency domain

to time domain, we have reduced the degree of freedom [10].
Using the above model, we now devise a simple algorithm that
can perfectly retrieve the time domain channel in the absence
of noise.

Without channel noise, (4) can be written as, in an element
by element fashion,

y1(k) = dk · uH
k g1

y2(k) = dk · uH
k g2

where uH
k is given in (2). Therefore, for dk �= 0,

y1(k)u
H
k g2 = y2(k)u

H
k g1

The matrix form of the above equation is

Y1WLg2 = Y2WLg1

where Y1 = diag(y1) and Y2 = diag(y2). Equivalently, we
have

[Y2WL| −Y1WL]

�
g1

g2

�
= 0 (5)

Therefore in the noiseless case, the channel can be retrieved
up to a scalar ambiguity by simply finding a solution for the
above homogeneous equation. We will address the uniqueness
of solution to the above equation (a.k.a., identifiability issue)
in the next section. We first discuss below the implementation
of the algorithm in the noisy case.

B Noisy Case

In the presence of channel noise, it is clear that equation
(5) will not hold. Instead of finding the exact solution we
may instead find the right singular vector corresponding to
the smallest singular value of the matrix

V = [Y2WL| −Y1WL] . (6)

Equivalently, we may seek to minimize the quadratic form:

min
g

gHUg = gHVHVg

where g = [g1,g2]
T and U = VHV is an 2L× 2L matrix and

is Hermitian and positive definite. This minimization can be
achieved by simply finding the eigenvector corresponding to
the smallest eigenvalue of U.

C Multiple OFDM Data Blocks

Most subspace methods require multiple data blocks for
them to work. The proposed method works with a single data
block yet it can be easily extended to multiple data blocks for
enhanced performance.

Two heuristic approaches can be adopted. The first one is
to do a channel estimation using each block and then average
over the data blocks to smooth out the error. Another ap-
proach is to first average over the V matrix for each block (or
equivalently, average over the observations y1 and y2), i.e.,
calculate the V matrix for each block and then use the av-
erage in (6). The second approach is advantageous from the
computational point of view — it involves only a single sin-
gular value decomposition (SVD) no matter how many data
blocks are used. Performance wise, we also find that the latter
approach yields much smaller error. This can be explained as
following. Averaging over V allows the smoothing before the
SVD, which tends to better smooth out the random channel
noise than averaging after SVD.



IV. Identifiability

In this section, we discuss the identifiability issues based on
system model (4). The channels are said to be identifiable if in
the absence of noise, there is a unique solution (up to a scalar
ambiguity) that satisfies the signal model (4). In particular,
we propose a sufficient and a necessary condition (though not
sufficient and necessary condition) for channel identifiability
using receiver diversity.

Theorem 1 (sufficient condition) The channel impulse re-
sponses g1 and g2 can be identified up to a scalar factor if the
following conditions hold:

1. H1(z) and H2(z) do not share common zeros.

2. N ≥ 2L − 1

Proof: In the noiseless case, model (4) becomes

y1 = DWLg1

y2 = DWLg2

Using the notation uH
k as in (2), we have

y1(k) = dk · uH
k g1

y2(k) = dk · uH
k g2

Assume we have another set of channel responses g̃1 and g̃2

that also satisfy the system model, then

y1(k) = d̃k · uH
k g̃1

y2(k) = d̃k · uH
k g̃2

Clearly
dk · uH

k g1 = d̃k · uH
k g̃1

dk · uH
k g2 = d̃k · uH

k g̃2

From this we get, through cross multiplication,

dkd̃k

�
uH

k g1

��
uH

k g̃2

�
= dkd̃k

�
uH

k g2

��
uH

k g̃1

�
which is equivalent to

H1(k)H̃2(k) = H̃1(k)H2(k)

for k = 0, . . . , N − 1. Notice that Hi(k) and H̃i(k) are respec-
tively N point DFT at frequency 2πk/N for impulse response
gi and g̃i. Correspondingly, we have in the time domain the
following identity for N point circular convolution2:

g1 ⊗ g̃2 = g̃1 ⊗ g2

Given that g1,g2, g̃1, g̃2 are all vectors of length L, if N ≥
2L − 1, then N point circular convolution is equivalent to
linear convolution. Therefore

g1 ∗ g̃2 = g̃1 ∗ g2

or
G1(z)G̃2(z) = G̃1(z)G2(z) (7)

Given (7), it is shown in [11] that the channel can be identified
up to a scalar factor if G1(z) and G2(z) do not share any
common nulls. Therefore we must have�

g1

g2

�
= α

�
g̃1

g̃2

�

Q.E.D.

2We denote circular convolution by ⊗ and linear convolution by
∗

Theorem 2 (necessary condition) If the channel impulse re-
sponse g1 and g2 are identifiable up to a scalar factor, then
N ≥ 2L − 1.

Proof: If the system is identifiable, there will be a unique (up
to a scalar ambiguity) solution g1 and g2 for (5). Therefore
the rank of V must be 2L − 1, i.e., its null space must have
dimension equal to 1. Since V is an N by 2L matrix, we must
have N ≥ 2L − 1.

Q.E.D.

V. Cramer-Rao Lower Bound for Channel
Estimation

In this section we evaluate the performance of the blind
estimation algorithm by deriving the CRLB. The unknown
parameter vector is

θ = [Re(g1), Re(g2), Re(d), Im(g1), Im(g2), Im(d)]T

Based on (4), and given that z1 and z1 are uncorrelated with
each other, the negative log likelihood function can be ob-
tained as, after discarding any irrelevant constant,

− lnΛ = (y1 −DWLg1)
H(y1 −DWLg1) +

(y2 −DWLg2)
H(y2 −DWLg2)

From this, the Fisher Information Matrix (FIM) can be de-
rived as

F = 2

�
Re(Fc) −Im(Fc)
Im(Fc) Re(Fc)

�
(8)

where

Fc =
1

σ2

2
4 QHQ 0 QHH1

0 QHQ QHH2

HH
1 Q HH

2 Q HH
1 H1 +HH

2 H2

3
5 ,

and σ2 is the noise power and Q = DWL. A detailed deriva-
tion of the FIM is provided in the appendix. Note that matrix
Fc is at least rank 1 deficient due to the scalar ambiguity of
the channel. To evaluate the CRLB channel estimator, we of-
ten consider one element of the channel (e.g., the first element
of g1) as known. After deleting the column and row associ-
ated with the known parameter, the remaining matrix will be
full rank and CRLB can be evaluated by taking the inverse of
that matrix.

It is interesting to consider the situation when g1 and g2

share a common zero at a subcarrier frequency, say k0. In
this case matrix Fc will have an all zero row and column at
the corresponding input symbol location, i.e., the row and col-
umn corresponding to dk0 . Therefore even if we assume g1(1)
is known, hence its corresponding row and column is deleted
from the FIM, the remaining FIM is still not full rank. One
explanation could be that because of the common zero at a
subcarrier frequency, the corresponding symbol dk0 is clearly
not identifiable. However, it is found numerically that after
getting rid of the row and column corresponding to dk0 , the
remaining FIM is still rank deficient — which implies that
the channel itself may not be identifiable. This observation
suggests that a possible necessary condition for channel iden-
tifiability is that g1 and g2 do not share common zeros at
subcarrier frequencies. Notice this condition is weaker than
that stated in the sufficient condition where g1 and g2 do
not share any common zeros without regard to their possible
locations.



VI. Simulations
We provide some numerical examples in this section to eval-

uate the performance of the proposed method and we compare
this method to the subspace method in [2]. We use normal-
ized root mean square error (NRMSE) as the performance
criterion:

NRMSE =
1

‖g‖

vuut 1

McL

McX
m=1

‖ĝ − g‖2

where Mc is the the number of Monte Carlo runs, L is the
channel length, ĝ is the channel estimate, and g is the true
channel. We used N = 16, L = 5, Mc = 1000 and 16 QAM
modulation scheme which are the same as the ones in [2]. The
channel impulse responses are

g1=[−.40−.17i, .11+.06i,−.10+.12i, .66−.50i,−.24+.16i]T

g2=[−.16−.10i, .52−.10i, .14+.01i, .50+.57i,−.25+.14i]T

(9)
Since the subspace method in [2] does not require channel
diversity, we evaluate the performance of channel estimation
for g1, i.e., g = g1 in the NRMSE expression. Because of
the scalar ambiguity, we set ĝ(1) = g(1) in calculating the
NRMSE. The results are plotted in Figure 1.

In the simulation, the subspace method uses 60 blocks while
the diversity method uses only 30 blocks. Clearly, the diver-
sity based method performs better than the subspace method.
We also note here that the gain also depends on the second
channel impulse response g2, though we do find through ex-
tensive simulation that in almost all cases, the diversity based
channel estimation provides substantial performance gain over
the subspace method provided no common zeros exist for the
two channels.

In Figure 2, we plot the NRMSE for a situation where both
g1 and g2 have channel nulls at some subcarriers, though they
do not share common nulls. The channel impulse responses
are chosen as

g1=[.47+.21i,−.28+.18i, .03+.10i, .77+.05i,−.02−.08i]T

g2=[.38+.15i, .30−.36i, .03+.22i, .67−.05i, .13−.30i]T

(10)
It is easy to verify that g1 has nulls at the 3rd and 9th subcar-
rier, while g2 has nulls at the 4th and 7th subcarrier. Simula-
tion results show that channels nulls do not affect the perfor-
mance of the diversity based estimator, as long as no identical
nulls exist for both channels. Indeed, if the two channels have
common nulls at a subcarrier, the performance of the diver-
sity method is very poor. This supports the conjecture that
no common zero at subcarrier frequency is also a necessary
condition for identifiability.

Finally, we plot the mean square error (MSE) of channel
estimation using diversity method along with the CRLB. Pa-
rameter settings are the same as in (9). We assume the first
element of g1 is known therefore the first row and column of
the matrix in Fc is deleted and the corresponding CRLB is
numerically evaluated by taking the inverse of the remaining
FIM. We compare the MSE and CRLB for g2 and the MSE
is obtained as usual:

MSE =
1

Mc

McX
m=1

‖ĝ2 − g2‖2

We use only a single OFDM block in this scenario. The results
are given in Figure 3. It can be seen that the MSE of the
proposed method is fairly close to the CRLB.

VII. Conclusions

In this paper, bandwidth efficient channel identification al-
gorithm utilizing receiver diversity is proposed. In the noise-
less case, the algorithm can perfectly retrieve the channels up
to a scalar factor. In the presence of noise, the algorithm has
very low complexity — only a single SVD is needed indepen-
dent of the number of OFDM blocks used. Some identifia-
bility results are obtained and the effect of channel nulls on
subcarriers is also discussed. Unlike many existing methods,
this new approach is data efficient — it can be implemented
using a single data block, although more data will certainly
enhance the estimation performance. Furthermore, the pro-
posed algorithm imposes no restriction on the input symbol
constellation. Cramer-Rao Lower Bound of the channel esti-
mation based on the diversity model is also derived. Simula-
tion is conducted to verify its performance advantage over an
existing blind algorithm.

A. Derivation of the Fisher Information
Matrix

Consider the signal model as in (4), the unknown parameter
vector is

� = [Re(g1), Re(g2), Re(d), Im(g1), Im(g2), Im(d)]T

Apparently the FIM, denoted by F, is of dimension 2N + 4L
by 2N + 4L. Define

� =

�
DWLg1

DWLg2

�

to be the mean value of the observation vector [y1,y2]
T that

is otherwise Gaussian distributed. Each element of FIM can
be written as, given that the noise covariance matrix is σ2I,

F(i, j) =
2

σ2
Re

"�
∂�

∂θi

�H �
∂�

∂θj

�#

Define �̃ = [g1,g2,d]
T . In matrix form, F can be written as

[12, 13]

F = 2

�
Re(Fc) −Im(Fc)
Im(Fc) Re(Fc)

�
where each element of Fc is

Fc(i, j) =
1

σ2

"�
∂�

∂θ̃i

�H �
∂�

∂θ̃j

�#

Write Fc in partitioned matrix form

Fc =
1

σ2

2
4 A11 A12 A13

A21 A22 A23

A31 A32 A33

3
5

Let Q = DWL, we can obtain each block of the Fc matrix as
following

A11 =
∂�H

∂g1

∂�

∂gH
1

=[WH
L DH 0][DWL 0]T =QHQ

A12 =
∂�H

∂g1

∂�

∂gH
2

=[WH
L DH 0][0 DWL]

T =0

A13 =
∂�H

∂g1

∂�

∂dH
=[WH

L DH 0][H1 0]T =QHH1

A21 =
∂�H

∂g2

∂�

∂gH
1

=[0 WH
L DH ][DWL 0]T =0



A22 =
∂�H

∂g2

∂�

∂gH
2

=[0 WH
L DH ][0 DWL]

T =QHQ

A23 =
∂�H

∂g2

∂�

∂dH
=[0 WH

L DH ][0 H2]
T =QHH2

A31 =
∂�H

∂d

∂�

∂gH
1

=[HH
1 HH

2 ][DWL 0]T =HH
1 Q

A32 =
∂�H

∂d

∂�

∂gH
2

=[HH
1 HH

2 ][0 DWL]
T =HH

2 Q

A33 =
∂�H

∂d

∂�

∂dH
=[HH

1 HH
2 ][H1 H2]

T =HH
1 H1 +HH

2 H2

Finally

Fc =
1

σ2

2
4 QHQ 0 QHH1

0 QHQ QHH2

HH
1 Q HH

2 Q HH
1 H1 +HH

2 H2

3
5
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Figure 1: Normalized RMSE for the blind OFDM channel
estimation using the diversity scheme and the subspace
scheme in [2]. The channel impulse responses are speci-
ficed in (9) where the NRMSE for channel g1 is used for
comparison.
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Figure 2: Normalized RMSE for the blind OFDM channel
estimation using the diversity scheme and the subspace
scheme in [2]. The channel impulse responses are speci-
ficed in (10) where the NRMSE for channel g1 is used for
comparison. In this example there are certain channel
nulls for both g1 and g2 at some subcarrier frequencies.
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Figure 3: MSE for the blind OFDM channel estimation
using diversity scheme and the corresponding CRLB. The
channel impulse responses are specified in (9) and the
MSE and CRLB are computed for g2 under that the as-
sumption that g1(1) is known.


