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Abstract—Page’s test is optimal for detecting a permanent change in
distribution, in the sense that it minimizes the worst case average delay
to detection given an average distance between false alarms. When used
to detect transient signals, however, it in fact becomes the generalized
likelihood ratio test (GLRT). Since a GLRT is in almost all casesad hoc,
Page’s test used as such cannot be said to be optimal in any explicit sense.
The subject of this correspondence is the development of the min–max
test, via the new ideas of Baygun and Hero, for the detection of a transient.

Index Terms—Detection, min–max detection, Page’s test. transient
signals.

I. INTRODUCTION

A transient event, or burst, can be thought of as a two-sided change:
at some unknown timens the observations processfUng switches
from being governed by probability density function (pdf)f0 to being
governed by pdff1; and at a later timene there is a return tof0:

This time between samplens andne�1 represents the occurrence
of a transient event, and it is desired to detect such a transient with
maximum probability for a specified false-alarm rate. One technique
for this detection problem is Page’s test [1], [4], [6], [9]: each time
the CUSUM statistic

Z0 =0

Zn = maxf0; Zn�1 + g(Un)g (1)

passes a thresholdh, a detection is declared. The nonlinearityg
may be anything desired, but is optimally the log-likelihood ratio
g(u) = log (f1(u)=f0(u)): This is illustrated in Fig. 1, in which
ns = 51, ne = 120, and wheref0 and f1 denote variance-25
Gaussian densities with respective means�1 and +1. Note the
“resetting to zero” action ofZn for low values ofn, and the general
upward trend ofZn during the transient’s duration—both are as
expected.

Page’s (or the CUSUM) test is optimal for detecting a permanent
change in distribution, in the sense that it minimizes the worst case
average delay to detection given an average distance between false
alarms [7], [8]. Page’s test can also be used to detect transient signals
[6], in which context it becomes the GLRT [4], [5]. Since a GLRT
is an ad hocprocedure, Page’s test used as such cannot be said to
be optimal in any explicit sense as applied to the transient detection
problem; and since it is not optimal, it is reasonable to question
whether or not it can be criticized.

II. THE MIN–MAX TEST

To some extent, what we are interested in is a joint detec-
tion/estimation problem. The starting and ending times of the transient
signal (in whosedetection onlywe are interested) can be regarded
as (nuisance) parameters. As such, the null hypothesis is simple but
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the alternative is composite. The min–max test [3] is defined as that
which minimizes, over all the possible tests, the maximum probability
of a miss (over all possible starting and ending times of the signal)
subject to a false-alarm rate constraint.

Suppose each of our independent and identically distributed (i.i.d.)
observationsfUkg is distributed according to probability lawsf1(�)
and f0(�), during and outside the transient signal, respectively.
Suppose also that there is at most one transient signal, that the (finite)
number of observations isM , and that the duration of the shortest
signalL is prior knowledge. Then the null hypothesis is

H0: fH (U1; U2; � � � ; UM) = f0(U1) � f0(U2) � � � f0(UM ): (2)

The alternative hypothesis is

H1 =

M�L+1

s=1

M�s+1

l=L

Hsl

in which

Hsl: fH (U1; U2; � � � ; UM ) (3)

= f0(U1) � f0(U2) � � � f0(Us�1)

� [f1(Us) � � � f1(Us+l�1)] � f0(Us+l) � � � f0(UM ): (4)

The indicess and l denote the starting sample time and the length
of the transient, respectively. The likelihood ratio for a signal with a
particular duration and starting time is thus

LR(fUkg
M
k=1) =

s+l�1

k=s

f1(Uk)

f0(Uk)
: (5)

In this correspondence our goal is to detect whether there is a tran-
sient signal or not, with no interest in its location. As indicated earlier,
the alternative iscomposite, and in such situations a generalized
likelihood ratio approach (i.e., the Page procedure) is a reasonable
candidate. The GLRT is not the only mode of attack, however; and
further, it can be unsatisfying due to its lack of optimality properties.
It is of course difficult to pose a criterion of optimality in the
composite case, but one recently propounded [3], and that which
we adopt, is as follows.

Choose a test which minimizes the maximum probability of
a miss, subject to a false-alarm rate constraint. Here the
minimization is over all tests, and the maximization is over
all possible alternatives.

It was shown [3], that such a “min-max” test is the weighted sum
of the likelihood ratios

T =

M�L+1

s=1

M�s+1

l=L

csl

s+l�1

k=s

f1(Uk)

f0(Uk)

H

H

� (6)

where�, a function offcslg, is determined by the desired false-alarm
rate �

PrfT >�jH0g = � (7)

and fcslg are the coefficients maximizing

s;l

csl PrfT < �jHslg (8)

subject to0 � csl � 1 and �s;l csl = 1: It is clear that the
maximizing coefficientsfcslg, called optimal coefficients, can be
obtained by solving the nonlinear optimization problem (8). When
possible, it is usually easier to use the “equalizer rule”: more
precisely, a sufficient condition forfcslg to be the optimal coefficients
is that the probability of a miss

PrfT <�jHslg
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Fig. 1. An illustration of the Page’s test procedure. From time samples51–120 the data is Gaussian with variance25 and mean� = 1; otherwise,
it is Gaussian with the same variance and mean� = �1: The CUSUM statistic and the “state-of-nature” processes are also plotted. Here Page’s
update uses the log-likelihood ratio.

is constant over all the alternative hypothesesfHslg: However,
sometimes the equalization over all the alternative hypothesesfHslg
is impossible (the case with our problem), because the probability
of a miss under some alternative hypotheses, called dominating
hypotheses in [2], is always larger than the probability of a miss
under the other alternative hypotheses no matter whatfcslg are. In
this case, equalization of only the dominating probabilities of a miss
becomes a sufficient condition for constructing the min–max test,
provided that the weights for the nondominating hypotheses are set
to zero [2]. This results in the theorem below. We begin with the
following lemma.

Lemma 1: With fH(~U) and fK(~U) being probability density
functions of vector observation~U under hypothesesH and K,
respectively,

Pr
fK(~U)

fH(~U)
<� jH � Pr

fK(~U)

fH(~U)
<� jK (9)

is true for all thresholds�: Further, iffH andfK are not “essentially
the same” and� is nontrivial, meaning that at least one of

Pr
fK(~U)

fH(~U)
<� jH and Pr

fK(~U)

fH(~U)
<� jK (10)

is in the open interval(0; 1), then the inequality in (9) is strict.

While the lemma itself is intuitive, its proof is included in the
appendix for completeness.

Theorem 1: Suppose the prior knowledge is that there can be at
most one transient signal and the duration of the shortest possible
signal is L: As the number of i.i.d. observationsM approaches
infinity, the min–max test can be written as

M�L+1

i=1

i+L�1

j=i

f1(Uj)

f0(Uj)

H

H

� (11)

where f1(Uj) and f0(Uj) are the pdf’s of an individual indepen-
dent observation under the signal-present and -absent hypotheses,
respectively. The threshold� is determined by the false-alarm rate
constraint.

That is, the min–max optimal test for detection of a transient of
length at leastL can be thought of as the Neyman–Pearson optimal
test for the alternative

fH (U1; U2; � � � ; UM )

=
1

M � L+ 1

M�L+1

s=1

fH (U1; U2; � � � ; UM ) (12)

meaning that any transient isexactlyof lengthL, and among these
all are equally likely.

Proof of Theorem 1:As the number of observations approaches
infinity, the distribution of the likelihood ratio (5) for the hypotheses
with the same length of signal becomes permutation invariant. The
result is that the coefficients for the same length of signal in test (6)
are independent of the starting points: Or, in short,csl = cl: For
easy reference, we rewrite test (6) below

T =

M�L+1

s=1

M�s+1

l=L

csl

s+l�1

k=s

f1(Uk)

f0(Uk)

H

H

�: (13)

Constraint�s;l csl = 1 implies that there exists at least onel1 such
that cl is positive. Now for arbitrarys1 andL � l1 �M � s1 +1,
consider the two hypothesesHs l and Hs (l +1): The difference
between these two hypotheses is that the distributions forUs +l

are different, while, for all otherk 6= s1 + l1, Uk ’s have the same
distribution. Specifically, underHs l , we have

U1; U2; � � � ;Us �1; Us +l ; Us +l +1; � � � ; UM � f0

Us ; � � � ; Us +l �1 � f1

while underHs (l +1), we have

U1; U2; � � � ;Us �1; Us +l +1; � � � ; UM � f0

Us ; � � � ; Us +l � f1:

The statistic (13) is complicated in form; but it is simply the weighted
sum of products off1(Uk)=f0(Uk): Some of these products contain
the termf1(Us +l )=f0(Us +l ) and some do not. We hence split
T in (13) according to

T =
f1(Us +l )

f0(Us +l )
T1 + T2 (14)
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Fig. 2. Relative performance of Page’s procedure (dotted) and the min–max test (solid) when the latter’s design minimum-transient length isL = 4: The
actual transient here is of lengthl = 4; the situation is Gaussian with mean shift� = 0:9:

where neitherT1 nor T2 involve Us +l : We have the following

Pr(T <�) =Pr
f1(Us +l )

f0(Us +l )
T1 + T2<�

=Pr
f1(Us +l )

f0(Us +l )
<
� � T2

T1
: (15)

Note that under bothHs l andHs (l +1), the distributions forUk
with k 6= s1+ l1 are identical to each other. Therefore, we can apply
Lemma 1 to (15) after conditioning on and averaging overT1 andT2
(i.e., all Uk with k 6= s1 + l1). For nontrivial� (which results in a
nontrivial � 0 = (��T2)=T1, asT2 andT1 are just sums of likelihood
ratios and equal to zero or infinity with zero probability) we get

PrfT <�jHs l g>PrfT <�jHs (l +1)g (16)

is true for any nontrivial�: This implies that the probability of a
miss under hypothesisHs (l +1) is always smaller than that under
Hs l regardless of the coefficientsfcslg: The hypotheses withl = L

dominate the probabilities of a miss. Hence the optimalfcslg is
achieved by equalization over hypothesesfHsLg, with fcslg set to
zero [2]8l >L: Then test (6) becomes (11) with� = cL�:

It is interesting to note that if the prior knowledge is that the
minimum length of a transient signal isL = 1, then as the number
of observationsM goes to infinity, the min–max test asymptotically
approaches the following simple form:

M

i=1

f1(Ui)

f0(Ui)

H

H

�:

Example Suppose the minimum length of a possible transient
signal L = 4 and the number of observations is much larger:
M = 500: This is a case where Theorem 1 can be used as an
approximation becauseM � L: The resulting test is

497

i=1

i+3

j=i

f1(Uj)

f0(Uj)

H

H

�: (17)

In this example we use the Gaussian shift-in-mean transient

f0(Uj) =
1

p
2�

e
�((U +�) =2)

and

f1(Uj) =
1

p
2�

e
�((U ��) =2)

:

Fig. 2 shows the simulation results of the receiver’s operating char-
acteristic (ROC) of the min–max test versus that of Page’s test for
the “least favorable” transient signal of lengthl = L = 4, and with
mean shift� = 0:9:

In this case, the min–max test should (and does) perform better than
any other test, including Page’s test. In Fig. 3, in which theactual
transient signal is of lengthl = 10, Page’s procedure outperforms
the min–max(L = 4) test; this is the price paid for robustness.

III. SUMMARY

In this correspondence, we proposed a min–max test for detecting a
transient signal. We have shown that when the number of observations
approaches infinity we can explicitly determine the min–max test
without doing the actual optimization. The min–max test is compared
with Page’s test. As must be so, the former is better when “ground-
truth” is worst case; that is, when the actual transient signal length
is its minimum (design) value. In more favorable situations (longer
transients), Page’s procedure can be superior.

APPENDIX

PROOF OF LEMMA 1

Pr
fK(~U)

fH(~U)
<� jH � Pr

fK(~U)

fH(~U)
<� jK

=
(f (~U)=f (~U))<�

fH(~U) d~U

�
(f (~U)=f (~U))<�

fK(~U) d~U
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Fig. 3. Relative performance of Page’s procedure (dotted) and the min–max test (solid) when the latter’s design minimum-transient length isL = 4: The
actual transient here is of lengthl = 10; the situation is Gaussian with mean shift� = 0:9:

�
(f (~U)=f (~U))<�

fH(~U) d~U

�
(f (~U)=f (~U))<�

�fH(~U) d~U

= (1� �)
(f (~U)=f (~U))<�

fH(~U) d~U: (18)

This means

Pr
fK(~U)

fH(~U)
<� jH � Pr

fK(~U)

fH(~U)
<� jK � 0; if � � 1:

On the other hand,

Pr
fK(~U)

fH(~U)
<� jH � Pr

fK(~U)

fH(~U)
<� jK

=
(f (~U)=f (~U))��

fK(~U) d~U

�
(f (~U)=f (~U))��

fH(~U) d~U

�
(f (~U)=f (~U))��

�fH(~U) d~U

�
(f (~U)=f (~U))��

fH(~U) d~U

= (� � 1)
(f (~U)=f (~U))��

fH(~U) d~U: (19)

This means

Pr
fK(~U)

fH(~U)
<� jH � Pr

fK(~U)

fH(~U)
<� jK � 0; if � > 1:

As such, inequality (9) is proved for all�: With inequality (9) proved,
condition (10) becomes equivalent to

(f (~U)=f (~U))<�

fH(~U) d~U > 0

and

(f (~U)=f (~U))<�

fH(~U) d~U > 0:

If fH andfK are not essentially the same, (18) and (19) become strict
inequalities, thus inequality (9) becomes strict for� 6= 1: If � = 1

Pr
fK(~U)

fH(~U)
<� jH � Pr

fK(~U)

fH(~U)
<� jK

=
f (~U)<f (~U)

[fH(~U)� fK(~U)] d~U > 0:

This completes the proof that (10) is the sufficient condition for
inequality (9) to be strict.
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