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A Detection Optimal Min—Max Test for Transient Signals the alternative is composite. The min—-max test [3] is defined as that
which minimizes, over all the possible tests, the maximum probability
Chunming Han, Peter Willetiember, IEEE Biao Chen, of a miss (over all possible starting and ending times of the signal)

and Douglas Abrahanmvember, IEEE subject to a false-alarm rate constraint.

) ) _ ) Suppose each of our independent and identically distributed (i.i.d.)
Abstract—Page’s test is optimal for detecting a permanent change in observationgU;,} is distributed according to probability law (-)
distribution, in the sense that it minimizes the worst case average delay . . . . ’ .
to detection given an average distance between false alarms. When usec®Nd fo(), during and outside the transient signal, respectively.
to detect transient signals, however, it in fact becomes the generalized Suppose also that there is at most one transient signal, that the (finite)
likelihood ratio test (GLRT). Since a GLRT is in almost all casesad hog  number of observations 8/, and that the duration of the shortest

Page’s test used as such cannot be said to be optimal in any explicit Sensesignal L is prior knowledge. Then the null hypothesis is
The subject of this correspondence is the development of the min—max '

test, via the new ideas of Baygun and Hero, for the detection of atransient. Ho: fr, (U1, Uz, -+, Un) = fo(Ur) - fo(Uz) - fo(Uar). (2)

Index Terms—Detection, min—max detection, Page’s test. transient The alternative hypothesis is
signals. M—L4+1 M—s+1

H = U U Hg
|. INTRODUCTION s=1 =T,

A transient event, or burst, can be thought of as a two-sided chantﬁb:"VhiCh
at some unknown time, the observations proced#/..} switches Ho: fu,, (Ui, Uz, -+, Un) 3)
from being governed by probability density function (pdf)to being = fo(UL) - folUn) -+ fo(Us_1)
governed by pdff;; and at a later time:. there is a return tg. . ; . ;

This time between sample, andn. — 1 represents the occurrence 1AW fiUsi=0)] - fo(Ussa) -+ fo(Unr). Q)

of a transient event, and it is desired to detect such a transient withe indicess and! denote the starting sample time and the length
maximum probability for a specified false-alarm rate. One techniqoé the transient, respectively. The likelihood ratio for a signal with a
for this detection problem is Page’s test [1], [4], [6], [9]: each timg@articular duration and starting time is thus

the CUSUM statistic L (1)
_ LRU{U N = RS20 5
Z0—0 {Uk}i=1) Ll;[ 7o (Tr) %)
Z, = max{0, Zn—1 + g(U.)} Q)

In this correspondence our goal is to detect whether there is a tran-
passes a thresholtl, a detection is declared. The nonlinearify sient signal or not, with no interest in its location. As indicated earlier,
may be anything desired, but is optimally the log-likelihood ratithe alternative iscomposite and in such situations a generalized
g(u) = log (fi(u)/fo(u)). This is illustrated in Fig. 1, in which likelihood ratio approach (i.e., the Page procedure) is a reasonable
ns = 51, n. = 120, and wheref, and f; denote varianceés candidate. The GLRT is not the only mode of attack, however; and
Gaussian densities with respective means and +1. Note the further, it can be unsatisfying due to its lack of optimality properties.
“resetting to zero” action ofZ,, for low values ofr, and the general It is of course difficult to pose a criterion of optimality in the

upward trend ofZ, during the transient’s duration—both are a$Omposite case, but one recently propounded [3], and that which
expected. we adopt, is as follows.

Page’s (or the CUSUM) test is optimal for detecting a permanent Choose a test which minimizes the maximum probability of
change in distribution, in the sense that it minimizes the worst case 3 mjss, subject to a false-alarm rate constraint. Here the

average delay to detection given an average distance between falsgninimization is over all tests, and the maximization is over
alarms [7], [8]. Page’s test can also be used to detect transient signalg| possible alternatives.

[6], in which context it becomes the GLRT [4], [5]. Since a GLRT - ., . .

is anad hocprocedure, Page's test used as such cannot be said & was sh_own (31, _that such a *min-max” test is the weighted sum
be optimal in any explicit sense as applied to the transient detecn%twthe “ke“hooij rit'flsM il e

problem; and since it is not optimal, it is reasonable to question o ) fi(Uk) Ho
whether or not it can be criticized. T= ; I_ZL el kl:[ fo(U) i, ©
II. THE MIN-MAX TEST where), a function of{c,, }, is determined by the desired false-alarm

. - - rate o
To some extent, what we are interested in is a joint detec-

tion/estimation problem. The starting and ending times of the transient Pr{T>\Ho} = o )
signal (in whosedetection onlywe are interested) can be regardednd {c,;} are the coefficients maximizing
as (nuisance) parameters. As such, the null hypothesis is simple but

(nui ) p u ull hyp is is simple bu cht Pr{T < ANH.i} ®)
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Fig. 1. An illustration of the Page’s test procedure. From time sampled20 the data is Gaussian with varianeé and meany = 1; otherwise,
it is Gaussian with the same variance and mgan= —1. The CUSUM statistic and the “state-of-nature” processes are also plotted. Here Page'’s
update uses the log-likelihood ratio.

is constant over all the alternative hypothesds.;}. However, That is, the min—max optimal test for detection of a transient of
sometimes the equalization over all the alternative hypothgBes} length at least. can be thought of as the Neyman—Pearson optimal
is impossible (the case with our problem), because the probabiligst for the alternative

of a miss under some alternative hypotheses, called dominati}n’g (U1, Uz, Uni)

hypotheses in [2], is always larger than the probability of a miss™**~ "~~~ M—L41

under the other alternative hypotheses no matter What are. In _ 1 Z Fo (U T U (12)
this case, equalization of only the dominating probabilities of a miss T M-L+1 o Hop AW 1 V2000 UM

becomes a sufficient condition for constructing the min—max test
provided that the weights for the nondominating hypotheses are
to zero [2]. This results in the theorem below. We begin with thd
following lemma. Proof of Theorem 1:As the number of observations approaches
Cn S = . . .. infinity, the distribution of the likelihood ratio (5) for the hypotheses
Lef“ma Lwith fi(U) anc_i fi;(([’) being probability deng_lty with the same length of signal becomes permutation invariant. The
functions of vector observatiod” under hypothesed! and K, result is that the coefficients for the same length of signal in test (6)

qaning that any transient exactly of length L, and among these
are equally likely.

respectively, are independent of the starting pointOr, in short,c,; = ¢;. For
Fic () Fic (T easy reference, we rewrite test (6) below
Pr{ X(-f <7|H p > Prq== = <7|K ©) M-L4l M—stl  sti-1 .
fu(T) . =Y 3 i ] IO gy (13)
is true for all thresholds. Further, if {7 and fx are not “essentially o = i folUk) i
the same” and- is nontrivial, meaning that at least one of Constraints, ; ¢,; = 1 implies that there exists at least ohesuch

Fr (T) 1r(T) i thate,, is positive. Now for arbitrarys; andL <1, < M —s; + 1,
o Fr(T) <rlffy and Pr fn(ﬁ) <7IR (10)  consider the two hypothese.,;, and H.,;,+1). The difference

o ) ) o _ _ between these two hypotheses is that the distributiond’for.;,
is in the open interval0, 1), then the inequality in (9) is strict. are different, while, for all othek # s + 11, Uy’s have the same

While the lemma itself is intuitive, its proof is included in thed'smbunon' Specifically, undefl.i,, we have

appendix for completeness. U, Uy oo - JUsy =1, Uy 1 Usy vty 41, - -, U ~ fo
Theorem 1: Suppose the prior knowledge is that there can be at Usisos Uit~ f
most one transient signal and the duration of the shortest possiplile underH. 1), we have
§|gngl is L. A§ the number of |.|.d.. observationd/ approaches UvUs, o Usy—1. Usy gty sts - Unt ~ fo
infinity, the min—-max test can be written as ) . ,
M—L4+1 i+L—1 AU Ho Usyyor oy Usypiy ~ f1-
> Il 74 = (11) The statistic (13) is complicated in form; but it is simply the weighted
i=1 j=i folls) in, sum of products off, (Ui )/ fo(Ui). Some of these products contain

where £, (U;) and fo(U;) are the pdfs of an individual indepen-the M fi(Us,+1,)/ fo(Us,+1,) and some do not. We hence split
dent observation under the signal-present and -absent hypotheded] (13) according to o
respectively. The threshold is determined by the false-alarm rate _ fl(L",q1+11)T1 +T (14)

constraint. — foUsytay)
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Fig. 2. Relative performance of Page’s procedure (dotted) and the min—-max test (solid) when the latter's design minimum-transienf.lengthTbe
actual transient here is of length= 4; the situation is Gaussian with mean shift= 0.9.

where neithe} nor I3 involve U,, 4;,. We have the following In this example we use the Gaussian shift-in-mean transient
AU 41,) ) Ty L w2
Pr(T<7)=Pr| "2 T +Tr < fo(Uy) = e
T <) <f0(531+11) 2T YL
S and
:Pr(f‘ Wersy) Tz). (15) 1 e
fg(b’sl_,_,l) T f1 ([T}) — e—((L'j—l»‘) /Z)
Note that under botlH,,;, and H,, 1), the distributions fol’x v2a

with k& # s1 + 1, are identical to each other. Therefore, we can applyig. 2 shows the simulation results of the receiver's operating char-
Lemma 1 to (15) after conditioning on and averaging dveand7, acteristic (ROC) of the min—-max test versus that of Page’s test for
(i.e., all Uy with k& # sy + 11). For nontrivial 7 (which results in a the “least favorable” transient signal of lengte= L = 4, and with
nontrivial 7' = (7 —T%)/T1, asT> andT; are just sums of likelihood mean shifty = 0.9.

ratios and equal to zero or infinity with zero probability) we get In this case, the min—max test should (and does) perform better than
any other test, including Page’s test. In Fig. 3, in which dutual
Pr{T < MH.,1,} > PriT < \|H. 1,51} (16) transient signal is of length = 10, Page’s procedure outperforms

the min—-max(L = 4) test; this is the price paid for robustness.

is true for any nontrivial\. This implies that the probability of a lll. SUMMARY

miss under hypothesi#, , 1) is always smaller than that under |n this correspondence, we proposed a min—max test for detecting a

H,,, regardless of the coefficients., }. The hypotheses with= L  transient signal. We have shown that when the number of observations

dominate the probabilities of a miss. Hence the optifial} is  approaches infinity we can explicitly determine the min—max test

achieved by equalization over hypothede$, }, with {c.;} set to without doing the actual optimization. The min-max test is compared

zero [2]VI> L. Then test (6) becomes (11) with= cr.7. O  with Page’s test. As must be so, the former is better when “ground-
It is interesting to note that if the prior knowledge is that theruth” is worst case; that is, when the actual transient signal length

minimum length of a transient signal & = 1, then as the number s its minimum (design) value. In more favorable situations (longer

of observationsld goes to infinity, the min—max test asymptoticallytransients), Page’s procedure can be superior.

approaches the following simple form:

“ APPENDIX
Z fHU;) 2 - PROOF OF LEMMA 1
fo(Us) rrl
Example Suppose the minimum length of a possible transient fh(() 1r(T) .
. . . ) <7|H —Pr - < 7|K
signal L = 4 and the number of observations is much larger: fn(l/) Fr (T
M = 500. This is a case where Theorem 1 can be used as an ' L
approximation becaus&/ > L. The resulting test is = / faU) dU
49T 43 @)/ fa@)<r
f1(U;) o g L.
Z H fo(U;) U,) f, T 17) _/ . - fr(U) dU
i=1 j= L (frU)/faU))<r
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Fig. 3. Relative performance of Page’s procedure (dotted) and the min—-max test (solid) when the latter's design minimum-transienf.lengthThe
actual transient here is of length= 10; the situation is Gaussian with mean shift= 0.9.

>

/ Fu(T) aif
(Fr(D)/ fr(@)<r

- / (T U
(Fae(@)/ far (D)<

=(1-7) / . . fn(ﬁ) av.
(Fr@)/ fa(U)<r
Pr fK(L:) <7|HY —Pr fl((b_:)

fu(U) Fu(T)

On the other hand,
T|H p — Pr fK(L_;)
fr(U)

PI‘{ fj{([_"’) <
/<fK<U)/fH<ﬁ>)zr

(18)

This means

<T|Ix’} >0, if - <1.

<T|I(}

fn(ﬁ ) dU

fuU)

/<fK<U>/fH(ﬁ>)zr
>

/ rfu(U) dU
@)/ fa@)2>r

- / fu(U) al
(@) fa(@)2>r

= (r—1) / fu(@) at.
(Fa(@)/ far (@)=

<7|H } —Pr fr\’(l_f:)<7_
fa(l)

As such, inequality (9) is proved for atl With inequality (9) proved,
condition (10) becomes equivalent to

(19)

This means

K} >0, if 7> 1.

/ﬂ  fa@dU >0
(D) Fa(T)<r

and

/ fu(T) dU > 0.
(P f (D)) <r

If f andfx are not essentially the same, (18) and (19) become strict
inequalities, thus inequality (9) becomes strict fogz 1. If 7 =1

!

f(0)
fu(0)

<7|H } —Pr fK(EQ<T|K
fu(U)

=/ )  [fu(0) = fx(T)) AT >0.
Fr@)<fg(U)

This completes the proof that (10) is the sufficient condition for
inequality (9) to be strict.
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