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Abstract—In this correspondence, we study some information theoret-
ical characteristics of vector Gaussian interference channels. Resorting to
the superposition code technique, a lower bound of the sum capacity for the
vector Gaussian interference channel is obtained. Alternatively, orthogonal
transmission via frequency division multiplexing is considered and we es-
tablish the concavity of sum rate as the bandwidth allocation factor for the
vector channel case. Numerical examples indicate that the achievable sum
rate via the superposition code compares favorably with orthogonal trans-
mission: the lower bound obtained via the superposition code dominates the
best achievable sum rate through orthogonal transmission. This improve-
ment holds for all interference power levels, a sharp contrast to that of the
scalar counterpart.

Index Terms—Multiple-input–multiple-output (MIMO) communica-
tions, sum capacity, vector Gaussian interference channels.

I. INTRODUCTION

The capacity region of an interference channel (IFC) has been a long
standing problem [1]–[4]. Even for the simple scalar Gaussian IFC, ca-
pacity region is only known for the very strong interference case [5], [6]
and the strong interference case [6]–[8]. An important milestone in IFC
is Carleial’s work in 1978 [4] where the superposition code idea, orig-
inally proposed by Cover for studying the broadcast channels [9], was
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used to obtain a much improved inner bound for IFC. This inner bound
was later refined by Han and Kobayashi [7] who gave an achievable rate
region that remains to be the largest reported to date. The advantage
of the Han and Kobayashi (HK) bound mainly comes from the simul-
taneous superposition coding as opposed to sequential superposition
coding; the implementation of the original HK bound [7, Theorem 3.1],
however, is computationally prohibitive. In [10], Sason rediscovered a
subset of the original HK bound using Sato’s time sharing idea [11],
which is much more amenable to numerical evaluation. Conversely,
nontrivial outer bounds have also been obtained for IFC [12]–[14].

It was observed that with moderate interference power, simple
orthogonal transmission via frequency or time division multiplexing
may outperform the superposition code in terms of achievable sum
rate [4]. The intuitive explanation is that the advantage of superposi-
tion code and the ensuing successive interference cancellation (SIC)
decoding structure is more advantageous with weak or strong interfer-
ence (i.e., significant power disparity exists between the intended and
interfering signals at the receiver). This advantage diminishes when
the interference power is comparable to the signal power. We note here
that while in theory the original inner bound of Han and Kobayashi
[7, Theorem 3.1] includes the achievable region of orthogonal trans-
missions, its evaluation is numerically prohibitive. There are a number
of existing superposition code based achievable regions (all subsets
of the original HK bound) that are amenable to numerical evaluation.
However, for the moderate interference power case, the achievable
sum rates of these known superposition code schemes do not have any
advantages over that of orthogonal transmissions [4], [7].1

Extending the IFC results to multiple antenna systems has been less
well studied. It is straightforward to show that, conditioned on a given
set of transmit covariance matrices, many of the classical IFC results
directly apply. This, however, is not interesting as the signaling needs
to be channel dependent in order to exploit the channel diversity. Vish-
wanath and Jafar [15] considered some special cases where either the
transmitter or the receiver is equipped with a single antenna under the
strong or very strong interference assumption. For the general mul-
tiple-input–multiple-output (MIMO) systems, obtaining a meaningful
achievable capacity region becomes extremely complicated.

In the current work, we consider the achievable sum rate for a two-
user vector Gaussian IFC. We present a superposition code approach
that improves upon [4] by jointly considering the first two decoding
stages therein; this yields an improved sum rate. It turns out that the
procedure can be considered as an adaptation of that proposed by Han
and Kobayashi [7] (specifically,G0

0 in [7, eq. (5.10), p. 56]) to the vector
Gaussian IFC case. We also show that for the vector Gaussian IFC, the
achievable sum rate using orthogonal transmission via frequency-divi-
sion multiplexing (FDM) is a concave function of the bandwidth allo-
cation factor; hence, the maximum achievable sum rate can be easily
calculated. We demonstrate via numerical examples that the achievable
sum rate of the superposition code approach significantly outperforms
that of the orthogonal scheme; and this performance gain holds for all
interference power levels. The superiority of interference transmission
over orthogonal transmission with MIMO terminals is in contrast to the
scalar interference channel case. One can attribute the improved sum
rate performance of the superposition code approach largely to the in-
terplay between the spatial diversity and multiuser diversity, as to be
elaborated in Section IV.

The rest of this correspondence is organized as follows. In Section II
we review the superposition code used by Carleial for computing an
inner bound on the capacity region for the scalar Gaussian IFC. The
difficulty of applying Carleial’s sequential superposition code to the
vector channel case motivates the proposed approach that relies on the
simultaneous superposition coding idea to obtain a lower bound of the

1A known exception was established in [10, Theorem 3]: when the power con-
straints are exceedingly generous compared with the noise variance, the achiev-
able sum rate upper bounds that of orthogonal transmissions.

sum capacity. The proposed numerical procedure is described in Sec-
tion III. In Section IV, we show that the superposition code transmis-
sion outperforms orthogonal transmission in terms of achievable sum
rate and we conclude in Section V.

II. A BRIEF REVIEW OF SUPERPOSITION CODING FOR SCALAR

GAUSSIAN IFC

In this section we briefly summarize the superposition code idea for
scalar Gaussian IFC. In [4], Carleial showed that the following stan-
dard-form Gaussian IFC can be obtained via proper normalization of
arbitrary Gaussian IFC:

y1 = x1 + ax2 + n1 (1)

y2 = bx1 + x2 + n2 (2)

where n1 and n2 are independent unit variance Gaussian noises, and
x1 and x2 are subject to power constraints of P1 and P2, respectively.

The very strong interference case corresponds to a2 � P1 + 1 and
b2 � P2 + 1 for the Gaussian IFC [5]; or equivalently

I(x1; y2) � I(x1; y1jx2)

I(x2; y1) � I(x2; y2jx1) (3)

The corresponding capacity region is known to be the rectangle

R1 �
1

2
log(1 + P1)

R2 �
1

2
log(1 + P2)

As such, interference is innocuous to the capacity region as the “very
strong interference” can be completely cancelled out through SIC. On
the other hand, the strong interference case corresponds to a2 � 1 and
b2 � 1 [6]; or, in general

I(x1; y2jx2) � I(x1; y1jx2)

I(x2; y1jx1) � I(x2; y2jx1): (4)

Its capacity region is known to be

R1 �
1

2
log(1 + P1)

R2 �
1

2
log(1 + P2)

R1 +R2 � min
1

2
log(1 + P1 + a

2
P2)

1

2
log(1 + b

2
P1 + P2)

which is effectively the intersection of two multiple-access channels
(MAC), each corresponding to one of the two receivers.

The superposition code idea can be most easily motivated by re-ex-
amining the strong and very strong interference cases. In both cases,
each receiver needs to recover the full interference message as well as
its intended message. The difference lies in that the very strong inter-
ference case allows each transmitter to communicate at maximum rate
while the strong interference case has an added constraint in terms of
sum rate. The superposition code proposed in [4] breaks the message
into two parts. Instead of trying to decode the entire interference mes-
sage, each receiver may decode only part of the interference message.
Specifically, for the Gaussian interference channel, different combina-
tion of successive decoding schemes need to be considered at the re-
ceiver and the whole process needs to be repeated for different power
allocations [4]. The procedure is briefly summarized below.
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TABLE I
FOUR DIFFERENT COMBINATIONS OF DECODERS

Divide each transmitted signal into two components that are inde-
pendent of each other.

x1 = x10 + x11

x2 = x20 + x22

Denote by �1 2 [0; 1] and �2 2 [0; 1] the power allocation factors, i.e.

E x
2
10 � �1P1; E x

2
11 � ��1P1

E x
2
20 � �2P2; E x

2
22 � ��2P2

where ��i = 1 � �i. The splitting of the messages allows partial de-
coding of the interference signal. Specifically, x10, x11, and x20 are to
be recovered at receiver 1 while x20, x22, and x10 at receiver 2; i.e., x10
and x20 are “common” information while x11 and x22 are “private” in-
formation. Four different combinations of decoders were considered in
[4], as listed in Table I.

For each of the four combinations, one can compute the achievable
rate region by varying the power allocation factors. The final inner
bound of the capacity region is the union of rate pairs achievable by
any of the four combinations. Apparently, the same superposition code
procedure can also be used to find a lower bound for the sum ca-
pacity, where one simply chooses the maximum sum rate among the
four decoders.

III. A LOWER BOUND OF THE SUM CAPACITY FOR VECTOR

GAUSSIAN IFC

A. System Model

Consider the following vector Gaussian channel with two mutually
interfering transceiver pairs:

y1 = H1x1 +H12x2 + n1 (5)

y2 = H21x1 +H2x2 + n2 (6)

where
• xi is a ti � 1 transmit vector from transmitter i with ti being the

number of elements at transmitter i. The power constraint for xi
is Pi, i.e.

tr E xix
T
i � Pi

• yi is a ri�1 receive vector at receiver i with ri being the number
of elements at receiver i;

• Hi is the ri � ti channel matrix corresponding to the ith trans-
ceiver pair (intended);

• Hij is the ri� tj channel matrix between the jth transmitter and
ith receiver (interference channel).

• ni is a ri�1 Gaussian random vectors. Without loss of generality,
we assume ni has the ri� ri identity matrix Ir as its covariance
matrix.

This model is illustrated in Fig. 1. In accordance with the discussion
of scalar Gaussian interference channels, all variables are assumed to
be real. Generalization to complex variables is straightforward and in-
volves only slight modifications.

Fig. 1. The MIMO interference channel.

B. A Superposition Coding/Decoding Approach for Vector Gaussian
IFC

The superposition coding idea described in Section II does not di-
rectly apply to the MIMO IFC. The difficulty lies in the fact that, while
for the scalar Gaussian IFC an achievable rate region can be deter-
mined by power allocation for a given decoding structure, for the vector
case, the transmitter signaling (in terms of covariance matrices) adds
considerable complexity. Second, there is inherent limitation in the de-
coding combinations as listed in Table I. This limitation is especially
pronounced in the vector channel case. For a fixed power allocation,
covariance matrices need to be jointly optimized to find the best achiev-
able sum rate. The coupled rate constraints between the two receivers
make it difficult to maximize the sum rate for any one of the four de-
coding combinations in Table I. This difficulty will be further elab-
orated later. In the following, we describe the decoding scheme that
jointly considers the first two decoding stages, thereby improves upon
the sequential decoding scheme in [4].

Define the sum capacity as follows.

C = max
tr(S )�P ;tr(S )�P

fR1 +R2g

where R1 and R2 are the transmit rates such that xi can be reliably
decoded at receivers i for i = 1; 2. Divide each transmitted signal into
two components that are independent of each other

x1 = x10 + x11

x2 = x20 + x22

The corresponding covariance matrices are

S1 = S10 + S11

S2 = S20 + S22

Denote by �1 2 [0; 1] and �2 2 [0; 1] the power allocation factors, i.e.

tr(S10) � �1P1; tr(S11) � ��1P1

tr(S20) � �2P2; tr(S22) � ��2P2

The proposed decoding scheme can be summarized as a two-stage
receiver:

• Receiver 1: (x10;x20) ! x11.
• Receiver 2: (x10;x20) ! x22.

where the parentheses indicate that the rates for x10 and x20 and the
associated covariance matrices are jointly determined. That is, both re-
ceivers jointly decode x10 and x20 at the first stage, while x11 and
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x22 are separately decoded at the second stage at each individual re-
ceiver. This enables joint optimization of the covariance matrices for
x10 and x20 instead of obtaining them in a sequential manner. This is
feasible due to the following key observation. Upon close inspection
of Table I, the first two decoding stages invariably decode (x10;x20),
albeit with different decoding orders for different combinations. Con-
sequently, (x10;x20) can be considered as transmitted signals for two
MACs, each corresponding to one of the two receivers. Therefore, the
maximum sum rate for (x10; x20) can be obtained from intersection of
the capacity regions for the two MACs.

The advantages over Carleial’s decoding scheme are twofold. First,
the achievable sum rate for (x10; x20) using the proposed method
clearly upper bounds the sequential decoding combinations from
Table I. This is true even for a scalar Gaussian IFC, which is precisely
the reason that simultaneous superposition coding is better than sequen-
tial superposition coding. For a single Gaussian MAC, the rate region
(hence the sum rate) can be obtained by exhausting different decoding
orders using SIC. However, for the intersection of two different MACs,
the four different combinations of decoding orders are not sufficient.
Second, and perhaps more importantly, for the vector case, treating
the decoding of x10 and x20 jointly allows one to consolidate the
optimization of the covariance matrices S10 and S20 into a single step.
This is possible as we are optimizing a single-letter metric, namely the
sum rate. This compares more favorably to the sequential decoding
schemes in Table I. To elaborate on this, consider, for example, the first
combination in Table I, whose achievable rate region for the common
information x10 and x20 for given S10 and S20 is

R10 � min
1

2
log Ir +H1S10H

T
1 Z1 +H12S20H

T
12

�1

;

1

2
log Ir +H21S10H

T
21Z

�1
2

4
=R

0
10

R20 � min
1

2
log Ir +H2S20H

T
2 Z2 +H21S10H

T
21

�1

;

1

2
log Ir +H12S20H

T
12Z

�1
1

4
=R

0
20

where, Z1 and Z2 are defined in (8) and (9). The maximum sum rate
for this combination is

R10 +R20 � max
tr(S )�� P ;tr(S )�� P

fR010 +R
0
20g:

This is not a concave function of either S10 or S20 and it is difficult to
find even a local maximum given the coupling effects of S10 and S20

on the two rates R10 and R20.
The maximization of the sum rate for the proposed procedure is car-

ried out in two steps. In the first step (corresponding to the last decoding
stage), we maximize R11+R22 with respect to S11 and S22; the corre-
sponding covariance matrices S11 and S22 are then used in the second
step (corresponding to the combined decoding stage for (x10;x20),
where S10 and S20 are optimized jointly to maximize R10+R20. The
maximum sum rate for a given (�1; �2) pair is denoted by R� � . The
above process needs to be repeated for each (�1; �2) pair; the max-
imum sum rate among all (�1; �2) pairs is chosen as the lower bound
for the sum capacity.

We describe in details the procedures of obtaining the achievable
sum rate and the associated covariance matrices for the proposed
scheme.

1) Maximization of R11+R22: In the last decoding stage, x10 and
x20 have been subtracted, after having been successfully decoded at
both receivers. The resulting signals at the two receivers are

y
0
1 = H1x11 +H12x22 + n1

y
0
2 = H2x22 +H21x11 + n2

As both receivers use single user detection by treating the other user’s
remaining signal as pure interference, the maximum sum rate R11 +
R21 is

max
tr(S )��� P ;tr(S )��� P

�
1

2
log Ir +H1S11H

T
1 Ir +H12S22H

T
12

�1

+
1

2
log Ir +H2S22H

T
2 Ir +H21S11H

T
21

�1

(7)

The above function is not a concave function of either of the two
covariance matrices S11 and S22. However, alternate optimization al-
gorithm based on gradient method can be devised to maximize the sum
rate. That is, the two covariance matrices are to be optimized alter-
nately by fixing the other. The algorithm is guaranteed to converge at
least to a local maximum. Convergence happens due to the fact that the
sum rate is upper bounded (by, for example, the sum of capacities for
the two interference-free channels with respective channel matricesH1

andH2) and the fact that the gradient method is guaranteed to improve
the achievable rate after each iteration.

2) Maximization of R10 + R20: For the first decoding stage, we
rewrite the received signal as

y1 = H1x10 +H12x20 + n
0
1

y2 = H2x20 +H21x10 + n
0
2

where

n
0
1 = H1x11 +H12x22 + n1

n
0
2 = H2x22 +H21x11 + n2

with respective covariance matrices

Z1 = H1S11H
T
1 +H12S22H

T
12 + Ir (8)

Z2 = H2S22H
T
2 +H21S11H

T
21 + Ir (9)

The covariance matrices Z1 andZ2 are assumed known given that S11

and S22 have been computed in the previous step.
Obtaining the sum rate for a single vector Gaussian MAC admits an

elegant iterative water filling algorithm [16]. This, however does not
apply to the current case: the sum rate to be maximized is confined to
the intersection of two capacity regions of MACs. There are cases that
neither of the sum capacities of the two MACs belongs to the intersec-
tion of the two MAC capacities (cf. Fig. 2(a)). We describe below a nu-
merical procedure in computing the maximum sun rate for R10+R20.

It is well known that, conditioned on given S10 and S20, the rate
region of a MAC with channel matrices H1 and H12, denoted by
C1(S10;S20), is a pentagon specified by

R10 �
1

2
log Ir +H1S10H

T
1 Z

�1
1

R20 �
1

2
log Ir +H12S20H

T
12Z

�1
1

R10 +R20 �
1

2
log Ir + H1S10H

T
1 +H12S20H

T
12 Z

�1
1

Similarly, the rate region for the other MAC with the channel ma-
trices H2 and H21 and conditioned on the same S10 and S20, which
we denote by C2(S10;S20), is specified by

R10 �
1

2
log Ir +H21S10H

T
21Z

�1
2

R20 �
1

2
log Ir +H2S20H

T
2 Z

�1
2

R10 +R20 �
1

2
log Ir + H21S10H

T
21 +H2S20H

T
2 Z

�1
2
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Fig. 2. The achievable regions for (R ;R ), where C = log jI +H S H Z j; C = log jI +H S H Z j; C = log jI +
H S H Z j; C = log jI +H S H Z j.

The achievable rate region for (R10; R20) conditioned on
the (S10;S20) pair is the intersection of the above two re-
gionsC(S10;S20) = C1(S10;S20) \ C2(S10;S20), specified by

R10�min
1

2
log Ir +H1S10H

T
1 Z

�1
1

1

2
log Ir +H21S10H

T
21Z

�1
2

4
=Rm

10 (10)

R20�min
1

2
log Ir +H12S20H

T
12Z

�1
1

1

2
log Ir +H2S20H

T
2 Z

�1
2

4
=Rm

20 (11)

R10 +R20�min
1

2
log Ir + H1S10H

T
1 +H12S20H

T
12 Z

�1
1

1

2
log Ir + H21S10H

T
21 +H2S20H

T
2 Z

�1
2

Rm
12: (12)

Fig. 2 illustrates two possible cases. For the first case, as in Fig. 2(a),
where lines corresponding to the sum capacities for the two individual
MACs all reside outside C(S10;S20), the maximum sum rate is Rm

10+
Rm

20 and in this caseRm
10+Rm

20 < Rm
12. For the second case, the achiev-

able sum rate of one of the two MACs is contained in C(S10;S20), the
maximum sum rate is Rm

12 and in this case Rm
12 < Rm

10 +Rm
20.

Therefore, the maximum sum rate R10 + R20 for the proposed de-
coding scheme is

max
tr(S )�� P ;tr(S )�� P

min f(Rm
10 +Rm

20) ; R
m
12g : (13)

The function to be maximized, minf(Rm
10 + Rm

20); R
m
12g, is jointly

concave in (S10;S20), its unique maximum can be evaluated fairly
straightforwardly. A simple approach is to alternately maximize
minf(Rm

10 +Rm
20); R

m
12g with respect to one of the covariance matrix

by fixing the other. The concavity of the function guarantees that the
convergent point is the global maximum.

C. Orthogonal Transmission

We now study the maximum sum rate of orthogonal transmission for
MIMO IFC. Consider FDM2 with a bandwidth allocation factor � 2

2For the scalar case, FDM and time division multiplexing (TDM) are equiva-
lent in achievable rate region under an average power constraint [4]. It can also
be shown that the same holds true for the vector Gaussian IFC case, i.e., the
achievable rate regions for FDM and TDM are also identical under an average
power constraint.

[0; 1], i.e., transceiver pair 1 occupies � fraction while transceiver pair
2 occupies �� = 1 � � fraction of the total bandwidth. The maximum
sum rate for FDM is given by

R1 +R2 � max
0���1

C(�)

where

C(�) = max
tr(S )�P ;tr(S )�P

�

2
log Ir +

1

�
H1S1H

T
1

+
��

2
log Ir +

1
��
H2S2H

T
2 : (14)

It is obvious that the optimal S1 and S2 for each C(�) are just water
filling covariance matrices. In addition, we show in the Appendix that
C(�) is a concave function of �. As such, the maximum sum rate for
FDM can be computed easily as there is a unique maximum for C(�).

IV. NUMERICAL COMPARISON

For simplicity we assume ti = ri
4
= n, for i = 1; 2, i.e., all trans-

mitters and receivers are equipped with n antennas. The signal model
described in (5) and (6) is amended by introducing two scalar parame-
ters a and b

y1 = H1x1 + aH12x2 + n1 (15)

y2 = bH21x1 +H2x2 + n2 (16)

This enables easy control of the average interference power. In all
cases, we assume a unit power constraint for both transmitters, i.e.,
tr(S1) = tr(S2) = 1.

Fig. 3 is a comparison of the two schemes in terms of achievable sum
rate as a function of the number of antennas n for a = b = 1=

p
3. The

channel matrices are generated whose entries are independent identi-
cally distributed unit variance Gaussian random variables. For each an-
tenna number, we compute the sum rate for 20 sets of randomly gen-
erated channel matrices and take the average. Apparently, the superpo-
sition code transmission enjoys significant advantage over orthogonal
transmission as the antenna number increases. Even the obtained lower
bound for the MIMO IFC has a noticeable margin of improvement over
FDM. Notice that for the scalar Gaussian IFC, i.e., (1) and (2), with
a = b = 1=

p
3, the sum rate obtained using FDM (or TDM with an

average power constraint) outperforms that of the superposition code
[4], [7]. Also plotted as a reference is the upper bound obtained by as-
suming two parallel channels with interference free transmissions. The
obtained lower bound is not too far away from this trivial upper bound,
indicating the lower bound is reasonably tight.
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Fig. 3. The average achievable sum rate as a function of antenna number.

Fig. 4. The achievable sum rate as a function of average interference power for n = 8 antennas at both transmitters and receivers.

To understand how the interference power affects the achievable sum
rate, we evaluate in Fig. 4 the achievable sum rate as a function of av-

erage interference power, defined as 10 log a2 dB with a = b. The
antenna number is fixed at 8 for both the transmitters and the receivers.
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The behavior is similar to that of the scalar case [17] in that both the
weak and strong interference cases are rather benign in terms of sum
rate as it approaches the interference free case. The sum rate appears
to attain its minimum with moderate interference (i.e., when the inter-
ference power is of the same magnitude as that of the desired signal).
Nonetheless, this lower bound for the interference transmission is con-
sistently better than the sum rate obtained using FDM, a sharp contrast
to the scalar Gaussian interference channel case. The upper bound by
assuming interference-free transmissions is also plotted; the obtained
lower bound is seen to be tight for weak and strong interferences.

The advantage of the superposition code for MIMO IFC over or-
thogonal transmission is largely attributed to the interplay between
multiuser diversity and spatial diversity. For the scalar Gaussian IFC,
innocuous interference only occurs if there is significant power dis-
parity between the intended and interfering signals; this is attributed to
multiuser diversity in a fading environment with independently faded
channels. For the MIMO IFC, the independent channel fading cou-
pled with the presence of multiple antennas make it likely that dif-
ferent channel matrices dwell in nonoverlapping subspace (in terms of
its dominant eigenmodes) in addition to possible power disparity. This
provides some natural immunity that the transmitter signaling can ex-
ploit via appropriate superposition code design. The interplay of spatial
and multiuser diversities allows both transceiver pairs to fully utilize
the degrees of freedom, as opposed to splitting them in the case of or-
thogonal transmissions.

V. CONCLUSION

The sum capacity of MIMO interference channel was studied for the
case with channel state information at both transceiver pairs. A proce-
dure to compute a lower bound on the sum capacity was developed
using the simultaneous superposition code approach. The achievable
sum rate was shown to significantly outperform that of the orthog-
onal transmission scheme via frequency-division multiplexing for the
MIMO channel case, a phenomenon that can be attributed to the inter-
play between multiuser diversity and spatial diversity.

APPENDIX

PROOF OF CONCAVITY OF THE MAXIMUM SUM RATE FOR FDM

From (14), we get

2C(�) = max
tr(S )�P ;tr(S )�P

� log Ir +H1S1H
T
1 (�Ir )�1

+�� log Ir +H2S2H
T
2 ( ��Ir )�1

= max
tr(S )�P ;tr(S )�P

� log H1S1H
T
1 + �Ir

+�� log H2S2H
T
2 + ��Ir � r1� log � � r2 �� log �� :

Consider the singular value decomposition ofH1 and H2

H1 = F1�1M
T
1

H2 = F2�2M
T
2 :

Define
~S1 =MT

1 S1M1

~S2 =MT
2 S2M2:

We have

2C(�) = max
tr(~S )�P ;tr(~S )�P

� log �1
~S1�

T
1 + �Ir

+ �� log �2
~S2�

T
2 + ��Ir � r1� log �

�r2 �� log ��

where Fi are dropped since they are unitary matrices.

For a given �, maximizing C(�) with respect to ~S1 and ~S2 are de-
coupled, hence can be considered independently. Consider ~S1 first.
From [18], [19], ~S1 is the waterfilling matrix for maximum C(�). De-
fine the singular values of H1 as �1i, 1 � i � min(t1; r1), with
�1i � �1;i+1, and

~S1 = diag(~s11; . . . ; ~s1t )

the water filling power allocation for ~S1 yields

~s1i = v �
�

�21i

+

where v is chosen such that
min(t ;r )

i=1

v �
�

�21i

+

= P1:

Assuming, without loss of generality, that ~s1i > 0 for i = 1; . . . ; n1,
n1 � min(t1; r1), and ~s1i = 0 for i = n1 + 1; . . . ; t1, i.e., there are
n1 positive ~s1i. We have

v =
P1

n1
+

�

n1

n

i=1

1

�21i

~s1i = v �
�

�21i
; i = 1; 2; . . . ; n1

~s1i = 0; i = n1 + 1; . . . ; t1:

Therefore,

� log �1
~S2�

T
1 + �Ir

= � log

n

i=1

�
2
1i

P1

n1
+

�

n1

n

i=1

1

�21i

n

�
r �n

:

Similar waterfilling solutions can be found for the second user. Substi-
tute the results back to C(�) and after some simplification, we get

2C(�) = � log

n

i=1

�21i

n1
+ n1� log P1 + �

n

i=1

1

�21i

+ �� log

n

i=1

�22i

n2
+ n2 �� log P2 + ��

n

i=1

1

�22i

� n1� log � � n2 �� log ��: (17)

Take the second partial derivative with respect to �, we have

d2C(�)

d�2
= �

n1P
2
1

2 P1 + �
n

i=1
1
�

2

�
n2P

2
2

2 P2 + �� n

i=1
1
�

2 < 0: (18)

Therefore, the maximum sum rate is a concave function of �; a unique
maximum point exists and can be found in a straightforward manner
via nonlinear program.
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On the Reliability Exponents of Two Discrete-Time Timing
Channel Models

Guy Nakibly and Shraga I. Bross, Member, IEEE

Abstract—The reliability exponents of two discrete-time single-server
timing channel models, considered by Bedekar and Azizog̃lu, are deter-
mined for rate zero as well as for all rates between the corresponding
critical rate and channel capacity. In both models, for rates between
zero and the critical rate, we provide random-coding lower bound and
straight-line combined with sphere-packing upper bound on the reliability
exponent.

Index Terms—Discrete-time queues, reliability exponent, sphere-packing
exponent, timing channel.

I. INTRODUCTION

The information capacity of the continuous-time exponential-server
queue was determined by Anantharam and Verdú [1], while the reli-
ability exponent of this model has been analyzed by Arikan [5]. Re-
cently, Wagner and Anantharam [7] strengthened Arikan’s result by
determining the zero-rate exponent of this timing channel model.

In [4], Bedekar and Azizog̃lu analyze the information timing ca-
pacities of two discrete-time single-server queues. The first model is
the discrete-time analogue of the continuous-time exponential-server,
and for a queue in which the service time (which is measured in slot
units) follows a geometric law the information capacity is determined.
In the second queueing model, both multiple arrivals as well as multiple
departures are allowed per slot, and for a queue wherein the number
of packets the server can handle per slot follows a geometric law the
timing capacity is determined.

In this work, we consider the reliability exponents of the above dis-
crete-time queueing models. For both models we derive the random
coding and sphere-packing exponents as well as the zero-rate expo-
nent, following similar lines as in [5]–[7]. The first model is treated in
Section II, while the model that allows multiple arrivals and multiple
departures per slot is treated in Section III.

Notation: We shall henceforth adopt the following notation.
Random variables will be denoted by capital letters, while their real-
izations will be denoted by the respective lower case letters. Whenever
the dimension of a random vector is clear from the context, the random
vector will be denoted by a bold-face letter, that is, XXX denotes the
random vector (X1; X2; . . . ; Xn), and xxx = (x1; x2; . . . ; xn) will
designate a specific sample value of XXX . However, in those cases where
it is important to emphasize explicitly the dimension of a random
vector—Xi shall denote the random vector (X1;X2; . . . ; Xi), and
xi = (x1; x2; . . . ; xi) will designate a specific sample value of Xi.
Furthermore, we write on(1) to denote an unspecified positive-valued
function that goes to zero as n goes to infinity, and we write o(n) to
denote a function such that o(n)=n = on(1).
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