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Abstract— This paper is concerned with coding theorems for
a generalized wiretap channel. In the problem of the wiretap
channel it is important to characterize the secrecy capacity, i.e.,
the maximum achievable rate of information securely transmitted
from a sender to a legitimate receiver in the presence of a
wiretapper. In our model channels are not restricted to mem-
oryless channels. We first define the secrecy capacity C s and
evaluate Cs from information-spectrum approach. We give a
new upper bound of Cs not including auxiliary random variables
and explore conditions under which the obtained upper bound
becomes tight for the cascaded wiretap channel.

I. INTRODUCTION

The problem of the wiretap channel proposed by Wyner
[8] is one of basic problems that treats coding for insecure
channels. As is given in Fig. 1, in the problem of the wiretap
channel we consider two cascaded channels (channel 1 and
channel 2). In the problem it is crucial to characterize rate
of information that is securely transmitted from a sender to a
legitimate receiver through the channel 1 in the presence of a
wiretapper who observes an output from the channel 2. The
maximum of such a rate is called the secrecy capacity Cs.
Wyner [8] gives the formula of Cs when both the channels 1
and 2 are stationary memoryless channels with finite input
and output alphabets. Csiszár and Körner [1] consider a more
general model of the wiretap channel where the two channels
are not cascaded (Fig. 2). Csiszár and Körner give the formula
of the secrecy capacity Cs under the same assumption of the
channels as in [8] as a byproduct of their results.

On the other hand, the information-spectrum approach,
which originates from Han and Verdu [2] and is described in
detail in Han’s book [3], gives a new method that enables us to
treat channels without memoryless assumption and finiteness
of input and output alphabets. In the information-spectrum
approach we first formulate a problem to be considered in
a general manner and consider a coding theorem that is
valid under such a general setting. Once a coding theorem
is established, we can obtain specific results by restricting the
general setting to certain cases. It is often that we can obtain
stronger versions of known results via such a generalization
and reduction argument. Of course, coding theorems in the
general settings are also of interest.

The objective of this paper is characterizing the secrecy
capacity Cs of a general wiretap channel from the information-
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Fig. 1 Block diagram of Wyner’s wiretap channel.

Encoder DecoderChannel 1Sender Receiver

Wiretapper

Sn Xn Y n

Zn

Channel 2

Ŝn

Fig. 2 Block diagram of the Csiszár-Körner wiretap channel.

spectrum approach. We consider the model given in Fig. 2.
The channels 1 and 2 can be any discrete channels, i.e., the
channels 1 and 2 are not restricted to memoryless channels
with finite input and output alphabets. Quite recently, Hayashi
[4], [5] succeeded in obtaining a formula Cs by using his
result on the channel resolvability problem. Hayashi’s result is
of interest not only as a generalization of the result by Csiszár
and Körner but also as a result connecting the problem of the
wiretap channel with the problem of the channel resolvability
first introduced in [2].

In this paper we give a new upper bound of the secrecy
capacity Cs not including auxiliary random variables for the
model given in Fig. 2. In the argument yielding the upper
bound, a Markov chain involved in the general wiretap channel
plays an important role. In addition, we compare the upper
bound with the lower bound of C s given in [5] and explore
conditions under which the two bounds coincide for the model
in Fig. 1. As a byproduct, we give a sharpened version of
Wyner’s result for stationary memoryless channels.

This paper is organized as follows. In Section 2 we for-
mulate the problem to be considered. Quantities used in the
information-spectrum approach are defined. In Section 3 we
give an upper bound of the secrecy capacity Cs. The upper
bound is established by using several lemmas. Section 4 is
devoted to investigation of conditions under which the upper
bound of Cs becomes tight for the model in Fig. 1.



II. PROBLEM FORMULATION

We consider the model of the wiretap channel given in
Fig. 2. The model in Fig. 2 is defined for each n ≥ 1 and
has two channels. Denote by X ,Y and Z input alphabets of
the channels 1 and 2, an output alphabet of the channel 1, and
an output alphabet of the channel 2, respectively. We assume
that X ,Y and Z are discrete sets. We consider the situation
where both the channels 1 and 2 have n input symbols and
n output symbols. Let Xn ∈ X n, Y n ∈ Yn and Zn ∈ Zn

denote n inputs to the channels 1 and 2, n outputs from the
channel 1 and n outputs from the channel 2, respectively. The
probability distributions of X n, Y n and Zn are denoted by
PXn , PY n and PZn, respectively.

For each n ≥ 1 the channel 1 is defined as a conditional
probability distribution of Y n given Xn, say PY n|Xn . We
use the notation W n

1 (Y n|Xn) = PY n|Xn(Y n|Xn) for the
channel 1. Similarly, the channel 2 is defined as a conditional
probability distribution W n

2 (Zn|Xn) = PZn|Xn(Zn|Xn). We
regard the channels 1 and 2 as sequences of conditional
probability distributions W 1

def= {Wn
1 (Y n|Xn)}∞n=1 and

W 2
def= {Wn

2 (Zn|Xn)}∞n=1, respectively.
In this paper we impose no condition on W 1 and W 2

except for that for each n ≥ 1 W n
1 (Y n|Xn) and Wn

2 (Zn|Y n)
are conditional probability distributions from X n → Yn and
X n → Zn, respectively. Thus, W 1 and W 2 can be any
discrete channels. Hereafter, we call W1 and W 2 general
channels. In particular, if for two conditional probability
distributions W1 : X → Y and W2 : X → Z it holds
that W n

1 (Y n|Xn) =
∏n

i=1 W1(Yi|Xi) and Wn
2 (Zn|Xn) =∏n

i=1 W2(Zi|Xi) for all n ≥ 1, we call W 1 and W 2 station-
ary memoryless channels, where Xn = X1X2 · · ·Xn, Y n =
Y1Y2 · · ·Yn and Zn = Z1Z2 · · ·Zn.

For each n ≥ 1 we consider a situation where a sender
wants to send a message Sn ∈ Sn to a legitimate receiver
through the channel 1, where Sn is the random variable uni-
formly distributed on a set of messages Sn = {1, 2, . . . , Mn}.
The sender encodes a message Sn to a codeword Xn by using
an encoder ϕn and transmits Xn ∈ X n to the legitimate
receiver. The legitimate receiver receives n outputs Y n from
the channel 1 and decodes Y n to Ŝn ∈ Sn by using a decoder
ψn. We also consider a wiretapper who observes Zn, n outputs
from the channel 2, and wants to know about the message Sn

from Zn. We assume that the encoder is stochastic. That is, the
encoder generates a codeword Xn for a message Sn subject to
a conditional probability distribution P Xn|Sn

(Xn |Sn). On the
other hand, the decoder ψn is assumed to be a deterministic
mapping from Yn to Sn. Note that if Mn and a stochastic
encoder ϕn are given, the joint probability distribution of
Sn, Xn, Y n and Zn is determined. In addition, notice that
Sn, Xn and Y nZn form a Markov chain in this order for
all n ≥ 1. Such a Markov chain is denoted by Sn →
Xn → Y nZn. Hereafter, we use notations S = {Sn}∞n=1,
X = {Xn}∞n=1, Y = {Y n}∞n=1 and Z = {Zn}∞n=1.

The objective of this paper is characterizing the maximum
achievable rate of information transmitted from the sender to

the legitimate receiver under the condition that the wiretapper
obtains almost no information on Sn from Zn. Such the
maximum rate is called a secrecy capacity [1], [8]. Before
giving the formal definition of the secrecy capacity, we intro-
duce notions that are usually used in the information-spectrum
approach [3]. For a sequence U = {Un}∞n=1 of real-valued
random variables, the limsup in probability and the liminf in
probability are defined by

p-lim sup
n→∞

Un = inf
{
α : lim

n→∞ Pr{Un ≥ α} = 0
}
,

p-lim inf
n→∞ Un = sup

{
β : lim

n→∞ Pr{Un ≤ β} = 0
}
,

respectively. Letting V = {Vn}∞n=1 be another sequence of
real-valued random variables, the following formulas hold:

p-lim inf
n→∞ (Un + Vn) ≥ p-lim inf

n→∞ Un + p-lim inf
n→∞ Vn, (1)

p-lim inf
n→∞ (Un + Vn) ≤ p-lim inf

n→∞ Un + p-lim sup
n→∞

Vn, (2)

p-lim inf
n→∞ (−Un) = −p-lim sup

n→∞
Un (3)

[3]. Throughout this paper, the following quantities play
important roles:

I(X ; Y ) = p-lim inf
n→∞

1
n

log2

PY n|Xn(Y n|Xn)
PY n(Y n)

,

I(X ; Y ) = p-lim sup
n→∞

1
n

log2

PY n|Xn(Y n|Xn)
PY n(Y n)

,

I(X ; Y |Z) = p-lim inf
n→∞

1
n

log2

PY n|XnZn(Y n|Xn, Zn)
PY n|Zn(Y n|Zn)

,

where these quantities are defined with respect to the joint
probability of the random variables included in the ex-
pressions. Note that we have I(X; Y ) = I(Y ; X) and
I(X ; Y ) ≤ I(X ; Y ) from their definitions. In addition, it
is known that I(X; Y ) ≥ 0 and I(X; Y |Z) ≥ 0 [3].
Furthermore, if Xn → Y n → Zn holds for all n ≥ 1, we
have I(X ; Z) ≤ I(X; Y ) [7] similarly to the data processing
inequality.

Now, we are ready to define the secrecy capacity of the
wiretap channel.

Definition 1: Suppose that the channel 1 W 1 =
{W n

1 (Y n|Xn)}∞n=1 and the channel 2 W 2 =
{W n

2 (Zn|Xn)}∞n=1 are given. A rate R is called achievable if
there exists a sequence {(ϕn, ψn)}∞n=1 of pairs of an encoder
ϕn and a decoder ψn satisfying

lim
n→∞Pr{Sn �= Ŝn} = 0, (4)

lim
n→∞

1
n

log2 Mn = R, (5)

H(S|Z) ≥ R, (6)

where

H(S|Z) = p-lim inf
n→∞

1
n

log2

1
PSn|Zn(Sn|Zn)

.

The secrecy capacity is defined by

Cs(W 1, W 2) = sup{R : R is achievable}.



If both W 1 and W 2 are stationary memoryless channels
specified by two conditional probability distributions W 1 :
X → Y and W2 : X → Z, respectively, Cs(W 1, W 2) is
simply written as Cs(W1, W2).

In Definition 1 (4), (5) and (6) are conditions on the
decoding error probability at the legitimate receiver, the rate
of transmitted information, and the secrecy of Sn given Zn,
respectively. Notice that in (5) we require the existence of
the limit. The condition on the secrecy (6), which was first
introduced in [6], is equivalent to I(S; Z) = 0 under (5).
Since we have 0 ≤ I(S; Z) ≤ I(S; Z), I(S; Z) = 0 implies
that for any constant γ > 0 it holds that

Pr
{∣∣∣∣ 1

n
log2

PSnZn(Sn, Zn)
PSn(Sn)PZn(Zn)

∣∣∣∣ ≤ γ

}
→ 1 as n → ∞,

i.e., on a set with probability arbitrary close to one Sn is almost
independent of Zn if n is sufficiently large.

Csiszár and Körner [1] give the following result.

Theorem 1 (Csiszár and Körner [1]): Suppose that X ,Y
and Z are finite alphabets and W 1 and W 2 are stationary
memoryless channels determined by conditional probability
distributions W1 : X → Y and W2 : X → Z, respectively.
Then, the secrecy capacity is given by

Cs(W1, W2) = max
V

[I(V ; Y ) − I(V ; Z)], (7)

where X ∈ X , Y ∈ Y and Z ∈ Z are the random variables
subject to the joint probability distribution P XY Z(X, Y, Z) =
PX(X)W1(Y |X)W2(Z|X), I(V ; Y ) is the mutual informa-
tion of V and Y . The maximum in (7) is taken with respect
to all the random variables V ∈ V satisfying V → X → Y Z
and |V| ≤ |X |2 +4|X |+3, where | · | denotes the cardinality.

Hayashi [5] generalizes Theorem 1 to the case where the
channels 1 and 2 are general channels.

Theorem 2 (Hayashi [5]): Let W 1 and W 2 be general
channels. Then, it holds that

Cs(W 1, W 2) = sup
V

[I(V ; Y ) − I(V ; Z)], (8)

where the supremum in (8) is taken with respect to V =
{Vn}∞n=1 satisfying Vn → Xn → Y nZn for all n ≥ 1. Here,
Vn takes values in an arbitrary discrete set Vn. In addition, it
also holds that

Cs(W 1, W 2) ≥ sup
X

[I(X ; Y ) − I(X ; Z)]. (9)

The main objective of this paper is characterization of
Cs(W 1, W 2) from a viewpoint different from [5]. In the
next section we give a new upper bound of Cs(W 1, W 2)
not including a sequence of auxiliary random variables V and
related to the conditional mutual information.

Remark: Strictly speaking, in Theorem 1 the criterion on
secrecy in (6) is stronger than the condition given by Csiszár
and Körner [1] that requires lim infn→∞ 1

nH(Sn |Zn) ≥ R.
We can easily verify this fact because it holds that H(S|Z) ≤

lim infn→∞ 1
nH(Sn|Zn) [3]. On the other hand, [5] requires

d
(n)
E → 0 as n → ∞, where

d
(n)
E

def=
1

Mn(Mn − 1)

∑
sn �=s′

n

d(PZn|Sn
( · |sn), PZn|Sn

( · |s′n))

and d( · , · ) denotes the variational distance. We can prove that
Hayashi’s criterion is stronger than (6).

III. AN UPPER BOUND OF THE SECRECY CAPACITY

We can obtain the following upper bound of C s(W 1, W 2).

Theorem 3: Let W 1 and W 2 be two general channels.
Then, it holds that

Cs(W 1, W 2) ≤ sup
X

I(X; Y |Z), (10)

where the supremum in (10) is taken with respect to all the
inputs X to the channel 1.

We prove Theorem 3 by using the five lemmas below. The
first lemma describes an easy consequence which follows from
the assumption of the existence of the limit in (5).

Lemma 1: If the limit of 1
n log2 Mn, n ≥ 1, exists, then

H(S) = H(S) = lim
n→∞

1
n

log2 Mn. (11)

Proof: Since Sn ∈ Sn = {1, 2, . . ., Mn} is assumed
to be uniformly distributed, it is easy to see that H(S) =
lim infn→∞ 1

n
log2 Mn and H(S) = lim supn→∞

1
n

log2 Mn.
If 1

n
log2 Mn converges to a limit, we have (11).

The following two lemmas characterize properties of
{(ϕn, ψn)}∞n=1 satisfying (4)–(6).

Lemma 2: For an arbitrary constant γ > 0 define E
(1)
n by

E(1)
n =

{
(sn, yn, zn) ∈ Sn × Yn × Zn :

∣∣∣ 1
n

log2

PSn|Zn(sn|zn)
PSn(sn)

∣∣∣ ≤ γ
}

. (12)

Then, for any {(ϕn, ψn)}∞n=1 satisfying (5) and (6) we have

Pr{(Sn, Y n, Zn) ∈ E(1)
n } → 1 as n → ∞.

Proof: It suffices to prove that

Pr{(Sn, Zn) ∈ Ẽ(1)
n } → 1 as n → ∞, (13)

where Ẽ
(1)
n is defined by

Ẽ(1)
n =

{
(sn, zn) ∈ Sn ×Zn :

∣∣∣ 1
n

log2

PSn|Zn(sn|zn)
PSn(sn)

∣∣∣ ≤ γ
}

.

Since we have H(S) = lim
n→∞

1
n

log2 Mn from Lemma 1, (6)

means that H(S|Z) ≥ H(S). This inequality, together with
Theorem 8 (d) in [7], tells us that I(S; Z) ≤ 0. On the other
hand, since we have 0 ≤ I(S; Z) ≤ I(S; Z), I(S; Z) = 0
means that I(S; Z) = I(S; Z) = 0. This, together with the
definitions of I(S; Z) and I(S; Z), implies (13).



Lemma 3: For an arbitrary constant γ > 0 define E
(2)
n by

E(2)
n =

{
(sn , yn, zn) ∈ Sn × Yn × Zn :

1
n

log2 PSn|Y nZn(sn|yn, zn) ≥ −γ
}

. (14)

Then, for any {(ϕn, ψn)}∞n=1 satisfying (4) it holds that

Pr{(Sn, Y n, Zn) ∈ E(2)
n } → 1 as n → ∞. (15)

Proof: Fix {(ϕn, ψn)}∞n=1 satisfying (4) arbitrarily. Con-
sider a virtual decoder ξn : Yn × Zn → Sn that takes both
Y n and Zn as the inputs and outputs Ŝ′

n
def= ξn(Y n, Zn). Note

that for any constant γ > 0 the Verdú-Han lemma (Theorem 4
in [7]) and Bayes’ theorem tell us that

Pr{PSn|Y nZn(Sn|Y n, Zn) < 2−nγ} < Pr{Sn �= Ŝ′
n}+2−nγ

(16)
for any ξn. Now, we define ξn as the mapping (Y n, Zn) �→
Ŝn = ϕn(Y n). Then, it follows from (4) and (16) that

Pr{PSn|Y nZn(Sn|Y nZn) < 2−nγ} → 0 as n → ∞,

which is equivalent to (15).

Lemmas 2 and 3 lead to the following key lemma.

Lemma 4: Let γ > 0 be an arbitrary constant. Then, for
any {(ϕn, ψn)}∞n=1 satisfying (4)–(6) it holds that

Pr
{ 1

n
log2

PY n|SnZn(Y n|Sn, Zn)
PY n|Zn(Y n|Zn)

≥ 1
n

log2 Mn − 2γ
}

→ 1 as n → ∞. (17)

Proof: Fix γ > 0 arbitrarily. We define E
(1)
n and E

(2)
n

by (12) and (14), respectively. We also define E
(3)
n by

E(3)
n =

{
(sn, yn, zn) ∈ Sn × Yn × Zn :

1
n

log2

PY n|SnZn(yn |sn, zn)
PY n|Zn(yn |zn)

≥ 1
n

log2 Mn − 2γ
}

.

In order to establish the claim of this lemma, in view of
Lemmas 2 and 3 it suffices to show that E

(3)
n ⊇ E

(1)
n ∩E

(2)
n .

To this end, fix (sn, yn, zn) ∈ E
(1)
n ∩E

(2)
n arbitrarily. Then, it

follows that

1
n

log2

PY n|SnZn(yn |sn, zn)
PY n|Zn(yn|zn)

1)
=

1
n

log2

PSn|Y nZn(sn |yn, zn)
PSn|Zn(sn|zn)

=
1
n

log2

PSn|Y nZn(sn |yn, zn)
PSn(sn)

− 1
n

log2

PSn|Zn(sn|zn)
PSn(sn)

2)

≥ 1
n

log2

PSn|Y nZn(sn |yn, zn)
PSn(sn)

− γ

3)
=

1
n

log2 PSn|Y nZn(sn |yn, zn) +
1
n

log2 Mn − γ

4)

≥ 1
n

log2 Mn − 2γ, (18)

where the marked equalities and inequalities in (18) follow
because
1): the conditional version of Bayes’ theorem,

2): (sn , yn, zn) ∈ E
(1)
n ,

3): PSn(sn) = 1/Mn for all sn ∈ Sn,
4): (sn , yn, zn) ∈ E

(2)
n .

Clearly, (18) guarantees that (sn, yn, zn) ∈ E
(3)
n .

Finally, we give the following lemma that can be regarded
as an extended version of the data processing inequality. This
lemma is proved similarly to the proof of Theorem 9 in [7].

Lemma 5:

I(S; Y |Z) ≤ I(X; Y |Z). (19)

Proof of Theorem 3: Suppose that a rate R is achievable.
Then, there exists a sequence {(ϕn, ψn)}∞n=1 satisfying (4)–
(6). Notice that we have for an arbitrary constant γ > 0

R ≤ 1
n

log2 Mn + γ for all sufficiently large n (20)

from (5). Since Lemma 4 and (20) lead to

Pr
{ 1

n
log2

PY n|SnZn(Y n|Sn, Zn)
PY n|Zn(Y n|Zn)

≥ R − 3γ
}
→ 1

as n → ∞, we have R ≤ I(S; Y |Z) ≤ I(X ; Y |Z), where
the last inequality follows from Lemma 5. Thus, by taking the
supremum with respect to X, it holds that

R ≤ sup
X

I(X ; Y |Z). (21)

Note that the right hand side of (21) no longer depends
on {(ϕn, ψn)}∞n=1. Then, the claim of the theorem follows
because R is an arbitrary achievable rate.

IV. SECRECY CAPACITY OF THE CASCADED WIRETAP

CHANNEL

In this section we consider the cascaded wiretap channel
given in Fig 1. In Fig. 1 let X n ∈ X n, Y n ∈ Yn and
Zn ∈ Zn be n inputs to the channel 1, n outputs from the
channel 2 (also n inputs to the channel 2), and n outputs
from the channel 2. Let W 1 = {Wn

1 (Y n|Xn)}∞n=1 and
W 2 = {Wn

2 (Zn|Y n)}∞n=1 be general channels corresponding
to the channels 1 and 2, respectively. Other notations are the
same as in the preceding sections.

The cascaded wiretap channel in Fig. 1 is a special case of
the wiretap channel in Fig. 2 satisfying

PY nZn|Xn(Y n, Zn|Xn) = Wn
1 (Y n|Xn)Wn

2 (Zn|Y n)

for all n ≥ 1, i.e., Xn → Y n → Zn for all n ≥ 1. Wyner [8]
gives the following result on the cascaded wiretap channel.

Theorem 4 (Wyner [8]): Suppose that X ,Y and Z are fi-
nite alphabet and W 1 and W 2 are stationary memoryless
channels determined by conditional probability distributions
W1 : X → Y and W2 : Y → Z, respectively. Then, the
secrecy capacity is given by

Cs(W1, W2) = max
X

[I(X; Y ) − I(X; Z)]

= max
X

I(X; Y |Z), (22)

where X ∈ X , Y ∈ Y and Z ∈ Z are the random variables
subject to the joint probability distribution P XY Z(X, Y, Z) =



PX(X)W1(Y |X)W2(Z|Y ) and I(X; Y |Z) is the conditional
mutual information of X and Y given Z.

Notice that I(X; Y ) − I(X; Z) = I(X; Y |Z) for any
random variables X, Y and Z satisfying X → Y → Z. Thus,
the second equality in (22) is an easy consequence of the
Markov chain.

Hereafter, we evaluate the secrecy capacity Cs(W 1, W 2)
for general channels W 1 and W 2. The combination of (9) in
Theorem 2 and (10) in Theorem 3 leads to

sup
X

[I(X ; Y )−I(X ; Z)] ≤ Cs(W 1, W 2) ≤ sup
X

I(X ; Y |Z).

(23)
However, the upper and the lower bounds in (23) are not tight
in general. In fact, we can prove only

I(X ; Y ) − I(X ; Z) ≤ I(X; Y |Z) ≤ I(X ; Y ) − I(X ; Z)
(24)

for any X, where (24) follows from Xn → Y n → Zn for all
n ≥ 1, (1), (3) and symmetries of I( · ; · ) and I( · ; · |Z).

The following two corollaries explore conditions under
which the lower and upper bounds of Cs(W 1, W 2) in (23)
coincide. If the two bounds coincide, we have the formula of
Cs(W 1, W 2) that is similar to Theorem 4.

Corollary 1: Assume that the supremums in (23) are simul-
taneously attained by some X = X∗ and such X∗ satisfies
I(X∗; Z∗) = I(X∗; Z∗), where Z∗ denotes the output form
the channel 2 corresponding to X ∗. Then, Cs(W 1, W 2) can
be written as

Cs(W 1, W 2) = sup
X

[I(X; Y ) − I(X ; Z)] (25)

= sup
X

I(X ; Y |Z). (26)

Corollary 2: If Cs(W 1, W 2) can be written as (25) and
(26) and the supremum in (25) is attained by some X =
X∗, then the supremum in (26) is attained by the same X ∗.
Furthermore, if Cs(W 1, W 2) can also be written as

C(W 1, W 2) = sup
X

[I(X ; Y ) − I(X ; Z)] (27)

and the supremum of (25) is attained by some X = X ∗,
then the supremums in (26) and (27) are attained by the same
X∗. Such X∗ satisfies I(X∗; Z∗) = I(X∗; Z∗), where Z∗

denotes the output from the channel 2 corresponding to X ∗.

Corollary 1 trivially follows from (23) and assumption in
the corollary. We give the proof of Corollary 2 below.

Proof of Corollary 2: Suppose that the Cs(W 1, W 2) is
expressed in both (25) and (26). Then, it follows that

sup
X

[I(X; Y ) − I(X; Z)] ≥ I(X ; Y |Z) for any X. (28)

Since X∗ attains the supremum in (28), we have

I(X∗; Y ∗) − I(X∗; Z∗) ≥ I(X ; Y |Z) for any X, (29)

where Y ∗ and Z∗ are outputs from the channels 1 and 2
corresponding to X ∗, respectively. By setting X = X∗ in
(29), we have

I(X∗; Y ∗) − I(X∗; Z∗) ≥ I(X∗; Y ∗|Z∗). (30)

On the other hand, (24) tells us that

I(X∗; Y ∗) − I(X∗; Z∗) ≤ I(X∗; Y ∗|Z∗). (31)

Then, the first claim of this corollary follows from (30) and
(31). Next, suppose that all of (25), (26) and (27) hold. Let X ∗

be an input of the channel 1 attaining the supremum in (25).
Then, by repeating the same argument, we have I(X∗; Y ∗)−
I(X∗; Z∗) = I(X∗; Y ∗|Z∗) = I(X∗; Y ∗) − I(X∗; Z∗).
This means that I(X∗; Z∗) = I(X∗; Z∗).

Now, suppose that both W 1 and W 2 are stationary mem-
oryless channels defined by two conditional probability dis-
tributions W1 : X → Y and W2 : Y → Z. Denote by
X0 the random variable on X that maximizes I(X; Y |Z)
in Theorem 4 and by PX0

the probably distribution of X 0.
Let X0 be the stationary memoryless process induced by
PX0

. Define Y 0 and Z0 the outputs from the channels 1
and 2 corresponding to X 0, respectively. Then, we can show
that, if I(X; Y ) < ∞, I(X ; Y |Z) is maximized by X0

and I(X0; Z0) = I(X0; Z0) is satisfied. Thus, Corollary 1
tells us that Cs(W1, W2) = I(X0; Y 0|Z0). Furthermore, we
can show that I(X0; Y 0|Z0) = I(X0 ; Y0|Z0) by the weak
law of large numbers, where Y0 ∈ Y and Z0 ∈ Z are the
random variables subject to PY0|X0

(Y0|X0) = W1(Y0|X0)
and PZ0|Y0

(Z0|Y0) = W2(Z0|Y0). This argument leads to the
following corollary:

Corollary 3: Suppose that W 1 and W 2 are stationary
memoryless channels determined by two conditional probabil-
ity distributions W1 : X → Y and W2 : Y → Z, respectively.
If I(X; Y ) < ∞, then it holds that

Cs(W1, W2) = max
X

[I(X; Y ) − I(X; Z)] = max
X

I(X; Y |Z).

Note that in Corollary 3 we use the condition (6) on secrecy
and Y and Z can be countably infinite alphabets. Corollary 3
can be regarded as a sharpened version of Theorem 4.
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[2] T. S. Han and S. Verdú, “Approximation theory of output statistics,” IEEE
Trans. on Inform. Theory, vol. IT-39, pp. 752–772, 1993.

[3] T. S. Han, Information-Spectrum Methods in Information Theory,
Springer, 2003.

[4] M. Hayashi, “Exponents of channel resolvability and wire-tapped chan-
nel,” Proc. of ISITA, Parma, Italy, pp. 1080–1085, 2004.

[5] M. Hayashi, “General non-asymptotic and asymptotic formulas in channel
resolvability and identification capacity and its application to wire-tap
channel,” preprint, 2005.

[6] H. Koga, “Coding theorems on Shannon’s cipher system with a general
source,” Proc. of 2000 IEEE ISIT, Sorrento, Italy, p. 158, 2000.
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