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Abstract— A multiple-access channel is considered in which
messages from one encoder are confidential. Confidential mes-
sages are to be transmitted with perfect secrecy, as measured
by equivocation at the other encoder. The upper bounds and the
achievable rates for this communication situation are determined.

I. I NTRODUCTION

We consider a two-user discrete multiple-access channel in
which one user wishes to communicate confidential messages
to a common receiver while the other user is permitted to
eavesdrop. We refer to this channel as themultiple access
channel with confidential messages(MACC) and denote it
(X1 ×X2, p(y, y1|x1, x2),Y ×Y1). The communications sys-
tem is shown in Figure 1. The ignorance of the other user is
measured by equivocation. This approach was introduced by
Wyner [1] for the wiretap channel, a scenario in which a single
source-destination communication is eavesdropped. Underthe
assumption that the channel to the wire-tapper is a degraded
version of that to the receiver, Wyner determined the capacity-
secrecy tradeoff. This result was generalized by Csiszár and
Körner who determined the capacity region of the broadcast
channel with confidential messages [2]. The Gaussian wire-tap
channel was considered in [3].

In this paper, we determine the bounds on the capacity re-
gion of the MACC, under the requirement that the eavesdrop-
ping user is kept in total ignorance. The results characterize
the rate penalty when compared to the conventional MAC [4],
[5] due to the requirement that one message is kept secret.

It is apparent from the results that eavesdropping by user
1 will hurt the achievable rate of user2. As illustrated in the
last section by an example in which the half-duplex constraint
is imposed, the eavesdropper should give up on listening all
together, thus maximizing rates of both users. The moral of
the example is that either user1 will make both himself and
the other user miserable by eavesdropping more and thus
reducing both its own and other user’s ability to transmit; or,
it will make both of them happy if it decides not to listen.
We note that, although user2 cannot know exact times when
user1 is eavesdropping, it is enough for user2 to know the
eavesdropping probability (or equivalently, the fractionof time
user1 is listening), to adjust its code rate accordingly. This
information can be considered public, since it is known to the
common receiver.

1This work was supported by NSF Grant NSF ANI 0338805.
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Fig. 1. System Model

II. CHANNEL MODEL AND STATEMENT OF RESULT

A discrete memoryless MAC with confidential messages
consists of finite setsX1,X2,Y,Y1 and a conditional proba-
bility distributionp(y, y1|x1, x2). Symbols(x1, x2) ∈ X1×X2

are channel inputs and(y, y1) ∈ Y × Y1 are channel outputs
at the receiver and encoder1, respectively. The channel
p(y|x1, x2) is a MAC channel, and the channelp(y, y1|x1, x2)
is a wire-tap channel. Each encodert, t = 1, 2, wishes to send
an independent messageWt ∈ {1, . . . , Mt} to a common
receiver inn channel uses. The channel is memoryless and
time-invariant in the sense that

p(y1,i, y2,i|x
i
1,x

i
2,y

i−1
1 ,yi−1

2 ) = p(y1,i, y2,i|x1,i, x2,i) (1)

wherexi
t =

[

xt,1, . . . , xt,i

]

. To simplify notation, we drop
the superscript wheni = n. A deterministic encoderg for user
1 is a mappingg : W1 → Xn

1 generating codewords

x1 = g(w1). (2)

A stochastic encoderf for user 2 is specified by a matrix
of conditional probabilitiesf(x2|w2), wherex2 ∈ Xn

2 , w2 ∈
W2, is the private message set, and

∑

x2

f(x2|w2) = 1.

Note thatf(x2|w2) is the probability that the messagew2 is
encoded as channel inputx2.

The decoding function is given by a mappingφ : Yn →
W1 ×W2.

The implicit assumption in our model is that user1 observes
the sequenceY1 in block fashion. This prevents user1 from
using symbolsY1 for encoding its own messages, as reflected
in the encoding function (2). This restriction of our model is



made for the sole purpose of making the problem easier to
solve and understand.

An (M1, M2, n, Pe) code for the channel consists of two
encoding functionsf, g, decoding functionφ such that the
average probability of errorof the code is

Pe =
∑

(w1,w2)

1

M1M2
P{φ(y) 6= (w1, w2)|(w1, w2) sent} (3)

The level of ignorance of user1 with respect to the confi-
dential message is measured by the normalized equivocation
(1/n)H(W2|X1,Y1).

A rate pair(R1, R2) is achievable for the MACC if, for any
ε > 0, there exists a(M1, M2, n, Pe) code such that

Mt ≥ 2nRt t = 1, 2, Pe ≤ ε (4)

R2 −
1

n
H(W2|X1,Y1) ≤ ε. (5)

The capacity region of the MACC is the closure of the set
of all achievable rate pairs(R1, R2).

The next two theorems show the outer bound and the
achievable rates and are the main results of this paper.

Let CU be a closure of the union of all(R1, R2) satisfying

R1 ≤ I(X1; Y |X2)

R2 ≤ I(V ; Y |U, X1) − I(V ; Y1|U, X1)

R1 + R2 ≤ I(X1, V ; Y ) − I(V ; Y1|U, X1) (6)

for some joint distribution

p(u, v, x1, x2, y, y1)

= p(u)p(v|u)p(x1|u)p(x2|v)p(y, y1|x1, x2) (7)

whereU andV are auxiliary random variables satisfyingU →
V → (X1, X2) → (Y, Y1).

Theorem 1: (Outer Bound)For any achievable rate pair
(R1, R2) in MACC it holds that(R1, R2) ∈ CU .

Theorem 2: (Achievability)The rates in the closure of the
union of all (R1, R2) satisfying

R1 ≤ I(X1; Y |U, V )

R2 ≤ I(V ; Y |U, X1) − I(V ; Y1|U, X1)

R1 + R2 ≤ I(X1, V ; Y |U) − I(V ; Y1|U, X1) (8)

for a joint distributionp(u, v, x1, x2, y, y1) that factors as (7).

III. O UTER BOUND

Proof: (Theorem 1)
We next show that any achievable rate pair satisfies

R1 ≤ I(X1; Y |X2, Q) (9)

R2 ≤ I(V ; Y |U, X1, Q) − I(V ; Y1|U, X1, Q) (10)

R1 + R2 ≤ I(U, X1, V ; Y |Q) − I(V ; Y1|U, X1, Q) (11)

for some product distributionU → V → (X1, X2) → (Y, Y1)
that factor as (7) and an independent timesharing random
variableQ. Then, the approach of [6, Thm.14.3.3] and the
observation that MarkovityU → V → (X1, X2) → Y implies
U → (V, X1) → Y , will prove the claim.

Consider a code(M1, M2, n, Pe) for the MACC. Applying
Fano’s inequality results in

H(W1, W2|Y) ≤ Pe log(M1M2 − 1) + h(Pe) , nδn (12)

whereδn → 0 asPe → 0. It follows that

H(W1, W2|Y) = H(W1|Y) + H(W2|Y, W1) ≤ nδn (13)

We first consider the bound onR1.

nR1 = H(W1)

= I(W1;Y) + H(W1|Y)

≤(a) I(W1;Y) + nδn

≤(b) I(X1(W1);Y) + nδn

≤(c) I(X1;Y|X2) + nδn

=(d)
n

∑

i=1

H(Yi|X2,Y
i−1) −

n
∑

i=1

H(Yi|Y
i−1,X1,X2)

+ nδn

≤(e)
n

∑

i=1

H(Yi|X2i) −
n

∑

i=1

H(Yi|X1i, X2i) + nδn

=

n
∑

i=1

I(X1,i; Yi|X2,i) + nδn (14)

where(a) follows from from Fano’s inequality (13);(b) from
(2); (c) from the independence ofX1,X2; (d) from the chain
rule; (e) from the fact that the conditioning decreases entropy
and from the memoryless property of the channel (1).

Following the approach in [6, Sec.14.3.4], we introduce
a uniformly distributed random variableQ, Q ∈ {1, . . . , n}.
Equation (14) becomes

nR1 ≤
n

∑

i=1

I(X1,i; Yi|X2,i) + nδn

=

n
∑

i=1

I(X1,i; Yi|X2,i, Q = i) + nδn

= nI(X1,Q; YQ|X2,Q, Q) + nδn

= nI(X1; Y |X2, Q) + nδn

(15)

whereX1 = X1,Q, X2 = X2,Q, Y = YQ. Distributions of new
variables depend onQ in the same way as the distributions of
X1,i, X2,i, Yi depend oni.

Next, we derive the bound onR2. Note that the perfect
security (5) implies

nR2 − nε ≤ H(W2|X1,Y1). (16)

Hence, we consider the bound onH(W2|X1,Y1).

H(W2|X1,Y1)

= H(W2|X1) − I(W2;Y1|X1)

= I(W2;Y|X1) + H(W2|Y,X1) − I(W2;Y1|X1)

≤ I(W2;Y|X1) − I(W2;Y1|X1) + nδn (17)



where the inequality follows from Fano’s inequality (13).
We next use a similar approach as in [2, Sect.V] to bound
equivocationH(W2|X1,Y1) in (17).

We denoteỸi+1
1 = [Y1,i+1, . . . , Y1,n] and use the chain rule

to obtain

I(W2;Y|X1)

=

n
∑

i=1

I(W2; Yi|Y
i−1,X1)

=

n
∑

i=1

I(W2, ; Yi|Ỹ
i+1
1 ,Yi−1,X1) + Σ1 − Σ2 (18)

I(W2;Y1|X1)

=

n
∑

i=1

I(W2; Y1i|Ỹ
i+1
1 ,X1)

=

n
∑

i=1

I(W2, ; Y1,i|Ỹ
i+1
1 ,Yi−1,X1) + Σ̂1 − Σ̂2 (19)

where

Σ1 =

n
∑

i=1

I(Ỹi+1
1 ; Yi|Y

i−1,X1)

Σ2 =
n

∑

i=1

I(Ỹi+1
1 ; Yi|Y

i−1,X1, W2)

Σ̂1 =

n
∑

i=1

I(Yi−1; Y1,i|Ỹ
i+1
1 ,X1)

Σ̂2 =

n
∑

i=1

I(Yi−1; Y1,i|Ỹ
i+1
1 ,X1, W2).

Lemma 1:Σ1 = Σ̂1 andΣ2 = Σ̂2.
Proof: Proof follows the approach in [2, Lemma7].
We let

Ui = (Yi−1Ỹi+1
1 Xi−1

1 X̃i+1
1 ) (20)

Vi = (W2, Ui) (21)

in (18) and (19) and obtain respectively

I(W2;Y|X1) =

n
∑

i=1

I(Vi; Yi|Ui, X1,i) + Σ1 − Σ2 (22)

I(W2;Y1|X1) =

n
∑

i=1

I(Vi; Y1,i|Ui, X1,i) + Σ̂1 − Σ̂2 (23)

We follow the same approach as in (15) to obtain

1

n

n
∑

i=1

I(Vi; Yi|Ui, X1,i) =
1

n

n
∑

i=1

I(Vi; Yi|Ui, X1,i, Q = i)

= I(VQ; YQ|UQ, X1,Q, Q)

= I(V ; Y |U, X1, Q) (24)

whereV = VQ, Y = YQ, X1 = X1,Q, U = UQ. Similarly,

1

n

n
∑

i=1

I(Vi; Y1,i|Ui, X1,i) = I(V ; Y1|U, X1, Q) (25)

where Y1 = Y1,Q. From the memoryless property of the
channel (1), it follows thatV → (X1, X2) → (Y, Y1).

Using (24) in (22), we obtain

I(W2;Y|X1) = nI(V ; Y |U, X1, Q) + Σ1 − Σ2. (26)

Similarly, using (25) in (23)

I(W2;Y1|X1) = nI(V ; Y1|U, X1, Q) + Σ̂1 − Σ̂2. (27)

Substituting (26) and (27) in (17) results in

1

n
H(W2|X1,Y1)

≤ I(V ; Y |U, X1, Q) − I(V ; Y1|U, X1, Q) + δn. (28)

Using (16) in (28), we obtain the desired the bound (10) on
rateR2.

We next prove the bound on the sum rate (11).

n(R1 + R2) = I(W1, W2;Y) + H(W1, W2|Y)

≤ I(X1, W2;Y) + nδn

≤ I(X1, W2;Y) − [H(W2)

− H(W2|X1,Y1) − nε] + nδn

= I(X1;Y) + I(W2;Y|X1)

− I(W2;Y1|X1) + n(δn + ε)

(29)

where the second inequality follows from the perfect secrecy
(5). Using (22), (23) and Lemma 1, we have

I(W2;Y|X1) − I(W2;Y1|X1)

=

n
∑

i=1

[

I(W2; Yi|Ui, X1,i) − I(W2; Y1,i|Ui, X1,i)
]

(30)

Hence, (29) can be rewritten as

n(R1 + R2)

≤
n

∑

i=1

[

I(X1; Yi|Y
i−1) + I(W2; Yi|Ui, X1,i)

− I(W2; Y1,i|Ui, X1,i)
]

+ n(δn + ε)

≤
n

∑

i=1

[

I(X1,Y
i−1, Ỹi+1

1 ; Yi) + I(W2; Yi|Ui, X1,i)

− I(W2; Y1,i|Ui, X1,i)
]

+ n(δn + ε)

=

n
∑

i=1

[

I(Vi, X1,i; Yi) − I(Vi; Y1,i|Ui, X1,i)
]

+ n(δn + ε)

≤
n

∑

i=1

[

I(Vi, Ui, X1,i; Yi) − I(Vi; Y1,i|Ui, X1,i)
]

+ n(δn + ε)

whereUi andVi are defined in (20) and (21). Using the same
time-sharing variable approach as before we obtain the sum
rate bound (11). Moreover, the MarkovityX1,i −Ui − Vi can
easily be verified.



IV. A CHIEVABILITY

Proof: (Theorem 2)
Fix p(u), p(x1|u), p(v|u) andp(x2|v). Let

R3 = R2 + I(V ; Y1|X1, U). (31)

Codebook generation:Generate a random typical sequence
u, with probabilityp(u) =

∏n

i=1 p(ui). We assume that both
transmitters and the common receiver know the sequenceu.

GenerateM1 = 2nR1 sequencesx1, each with probabil-
ity p(x1|u) =

∏n

i=1 p(x1,i|ui). Label themx1(w1), w1 ∈
{1, . . . , M1}.

GenerateM3 = 2nR3 sequencesv with probability
p(v|u) =

∏n

i=1 p(vi|ui). Label them v(w2, l), w2 ∈
{1, . . . , 2nR2}, l ∈ {1, . . . , 2nI(V ;Y1|X1,U)}.

Encoding: To send messagew1 ∈ W1, user 1 sends
codewordx1(w1). To send messagew2 ∈ W2, user2 uses
stochastic encoderf , and encoder2 uniformly randomly
chooses an codewordv(w2, l). That is, the encoder chooses
randomly a codewordv(w2, l) from a binw2. Finally, user2
generates the channel input sequencesx2 according top(x2|v).

Decoding: Let A
(n)
ε denote the set of typical(u,x1,v,y)

sequences. Decoder chooses the pair(w1, w2) such that
(u,x1(w1),v(w2, l),y) ∈ A

(n)
ε if such a pair(w1, w2) exists

and is unique; otherwise, an error is declared.
Probability of error: Define the events

Ew1,w2
= {(u,x1(w1),v(w2, l),y) ∈ A(n)

ε }. (32)

Without loss of generality, we can assume that(w1, w2) =
(1, 1) was sent. From the union bound, the error probability
is given by

Pe ≤P{Ec
1,1|(1, 1)} +

∑

w1 6=1

P{Ew1,1|(1, 1)}

+
∑

w2 6=1

∑

l

P{E1,w2
|(1, 1)}

+
∑

w1 6=1

∑

w2 6=1

∑

l

P{Ew1,w2
|(1, 1)} (33)

From the AEP and [6, Thm. 14.2.1, 14.2.3], it follows that

P{Ec
1,1|(1, 1)} ≤ δ (34)

P{Ew1,1|(1, 1)} ≤ 2−n[I(X1;Y |V,U)−δ] (35)

P{E1,w2
|(1, 1)} ≤ 2−n[I(V ;Y |X1,U)−δ] (36)

P{Ew1,w2
|(1, 1)} ≤ 2−n[I(X1,V ;Y |U)−δ] (37)

whereδ → 0 asn → ∞. Hence, (33) is bounded by

Pe ≤ δ + 2nR12−n(I(X1;Y |V,U)−δ) + 2nR32−n(I(V ;Y |X1,U)−δ)

+ 2n(R1+R3)2−n(I(X1,V ;Y |U)−δ) (38)

implying that we must choose

R1 ≤ I(X1; Y |V, U) (39)

R3 ≤ I(V ; Y |X1, U) (40)

R1 + R3 ≤ I(X1, V ; Y |U) (41)

to guaranteePe → 0 asn gets large.
Equivocation: We consider the normalized equivocation.

H(W2|Y1,X1)

≥ H(W2|Y1,X1,U)

= H(W2,Y1|X1,U) − H(Y1|X1,U)

= H(W2,Y1,V|X1,U) − H(V|W2,Y1,X1,U)

− H(Y1|X1,U)

= H(W2,V|X1,U) + H(Y1|W2,V,X1,U)

− H(V|W2,Y1,X1,U) − H(Y1|X1,U)

≥ H(V|X1,U) + H(Y1|V,X1,U)

− H(V|W2,Y1,X1,U) − H(Y1|X1,U)

= H(V|X1,U) − H(V|W2,Y1,X1,U)

− I(V;Y1|X1,U) (42)

The first term in (42) is given by

H(V|X1,U) = H(V|U) = nR3 (43)

where the first equality follows from the Markov chainV −
U − X1, and the second equality because givenU = u, V

has2nR3 possible values with equal probability.
We next show thatH(V|W2,Y1,X1,U) ≤ nδ1, where

δ1 → 0 as n → ∞. Let W2 = w2. User 2 then sends a
codewordv(w2, l). Let λw2

denote the average probability of
error that user1 does not decodev(w2, l) correctly given the
information W2 = w2. Following the joint typical decoding
approach, we haveλw2

→ 0 as n → ∞. Therefore, Fano’s
inequality implies that

H(V|W2 = w2,Y1,X1,U) ≤ 1 + λw2
(nR3 − nR2) , nδ1.

Hence

H(V|W2,Y1,X1,U) =
∑

w2∈W2

p(W2 = w2)H(V|W2 = w2,Y1,X1,U) ≤ nδ1.

(44)

Finally, the third term in (42) can be bounded by

I(V;Y1|X1,U) ≤ nI(V ; Y1|X1, U) + nδ2 (45)

whereδ2 → 0 asn → ∞. The proof follows the proof in [1,
Lemma8].

Therefore, by using (31), (43), (44), and (45), we can rewrite
(42) as

H(W2|X1,Y1) ≥ nR3 − nI(V ; Y1|X1, U) − n(δ1 + δ2)

= nR2 − nε (46)

whereε , δ1 + δ2.



V. D ISCUSSION ANDIMPLICATIONS

To show the impact of secret communication on the achiev-
able rates in MACC, we present two examples: the half-duplex
MACC and the Gaussian MACC. To simplify calculations, we
consider the following corollary which gives a weaker inner
bound used in the rest of the paper.

Corollary 1: The rates in the closure of the convex hull of
all (R1, R2) satisfying

R1 ≤ I(X1; Y |X2) (47)

R2 ≤ I(X2; Y |X1) − I(X2; Y1|X1) (48)

R1 + R2 ≤ I(X1, X2; Y ) − I(X2; Y1|X1) (49)

for fixed product distributionp(x1)p(x2) on X1 × X2 is
achievable in MACC.
Proof: Corollary follows by choosingV = X2 and U
independent fromX1 andX2 in Theorem 2.

Binary inputs are to be communicated from the both users
under a half-duplex model in which user1 cannot listen and
transmit at the same time. ThereforeX2 ∈ {0, 1} and X1 ∈
{∅, 0, 1}. Null symbol∅ models the listening period of user
1. WhenX1 = ∅, user1 observes the outputY1 = Y ; when
user1 transmits,X1 ∈ {0, 1}, the outputY1 is the null symbol,
no matter what user2 sends. When both users transmit, the
MAC channel to the destination is given by the mod2 sum
Y = X1 ⊕ X2. Otherwise,Y = X2. In summary,

Y = X1 ⊕ X2, Y1 = ∅, if X1 6= ∅ (50)

Y = X2, Y1 = Y, if X1 = ∅ (51)

DenoteP = P [X1 = 1] andD = P [X1 = ∅]. Rates (47)-(49)
for this channel can be shown to be

R1 ≤ h(P ) (52)

R2 ≤ H(X2)(1 − D) (53)

R1 + R2 ≤ H(Y ) − H(X2)D. (54)

If we assume the inputs at user2 are equally likely, then
H(Y ) = 1. The rates (52)-(54) become

R1 ≤ h(P ) (55)

R2 ≤ 1 − D (56)

R1 + R2 ≤ 1 − D (57)

and the secrecy constraint (56) becomes irrelevant. The achiev-
able rates are determined by the amount of time user1 listens:
the more user1 listens, the more user2 must equivocate rather
than communicate. The best strategy is then for user1 to
transmit all the time(D = 0), thus achieving the full capacity
region of the conventional MAC.

In the other limiting case in which user1 only listens (D =
1), user 2 cannot send information because user1 hears it
(Y1 = X2). In fact, the channel reduces to the special case of
the channel considered in [2] and the conclusion is agreeable
with that of [2]. In the example, the fact thatR2 = 0 is due to
the very special channelY1 = Y . In the more general case in
which Y1 is a noiser observation ofX2 thanY , user 2 can still

“squeeze” some information through even if user1 listens all
the time. Nonetheless, this example illustrates the fundamental
behavior in the MACC, that can be observed from Corollary 1,
Eq. (48): the more user1 decides to listen, the more user2
has to equivocate and his achievable rate is lower.

We next consider the Gaussian channel

Y =X1 + X2 + Z (58)

Y1 =X2 + Z1 (59)

whereZ andZ1 are independent zero-mean Gaussian random
variables with varianceN and N1, respectively. The code
definition is the same as given in Section II with the addition
of the power constraints

1

n

n
∑

i=1

E[X2
ti] ≤ Pt, t = 1, 2. (60)

Corollary 2: The rates in the closure of the convex hull of
all (R1, R2) satisfying

R1 ≤ C

(

P1

N

)

(61)

R2 ≤ C

(

P2

N

)

− C

(

P2

N1

)

(62)

R1 + R2 ≤ C

(

P1 + P2

N

)

− C

(

P2

N1

)

. (63)

Corollary follows from Theorem 2 by independently choosing
Xt ∼ N [0, Pt] for t = 1, 2.

Future Work

It is conceivable that the outer bounds given in Theorem 1
can be strengthened to coincide with the lower bounds of
Theorem 2. Investigating this possibility and determiningthe
MACC capacity are the subjects of our future work. Moreover,
the formulation of this problem in which the objective is
to maximize rates under the secrecy constraint follows the
definition of Wyner [1]. However, different objectives can be
envisioned, in which user1 is more interested in eavesdrop-
ing than in maximizing its rate. It would be interesting to
compare the conclusions that follow from the two problem
formulations.
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