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Unconditionally Secure Key Agreement
and the Intrinsic Conditional Information

Ueli M. Maurer, Senior Member, IEEEand Stefan Wolf

Abstract—This paper is concerned with secret-key agreement an insecure communication channel such that an adversary
by public discussion. Assume that two parties Alice and Bob and (Eve) with access to this channel is unable to obtain useful
an adversary Eve have access to independent realizations of ran-jormation abouth/. In the classical model of a cryptosystem
dom variables X, Y, and Z, respectively, with joint distribution ioher) introd d by Sh 171 Eve h fect
Pxyz. The secret-key rateS(X;Y||Z) has been defined as the (or cip .er) introduced by Shannon | _]' Ve has periec a_CceSS
maximal rate at which Alice and Bob can generate a secret key 10 the insecure channel; thus she is assumed to receive an
by communication over an insecure, but authenticated channel identical copy of the ciphertext’ received by the legitimate
such that Eve’s information about this key is arbitrarily small.  receiver Bob, wher& is obtained by Alice as a function of
We define a new conditional mutual information measure, the the plaintext messagk/ and a secret keys' shared by Alice

intrinsic conditional mutual information between X and Y when . . .
given Z, denoted byI(X;Y | Z), which is an upper bound on and Bob. Shannon defined a cipher system to be perfect if

S(X:Y||Z). The special scenarios are analyzed wher&, v, I(M;C) =0, i.e., if the ciphertext gives no information about
and Z are generated by sending a binary random variableR, the plaintext or, equivalently, i/ and C are statistically

fc;]r exa:nple "’tl signal broadcast EY r?ngtelhte, O‘t’e('; |Sdepe|:quent independent. When a perfect cipher is used to encipher a
channels, or two scenarios In wnichZ Is generate y sending

X and Y over erasure channels. In the first two scenarios it m_essageM, an adversary C?n do no better than gudss
can be shown that the secret-key rate is strictly positive if and Without even looking at the ciphertekt. Shannon proved the
only if I(X:Y | Z) is strictly positive. For the third scenario, pessimistic result that perfect secrecy can be achieved only

a new protocol is presented which allows secret-key agreementwhen the secret key is at least as long as the plaintext message

even when all the previously known protocols fail. or, more precisely, whed (K) > H(M).
Index Terms—Cryptography, one-time pad, perfect secrecy,  For this reason, perfect secrecy is often believed to be
secret-key agreement. impractical. In [13] this pessimism has been relativized by

pointing out that Shannon’s apparently innocent assumption
that, except for the secret key, the opponent has access to
. precisely the same information as the legitimate receiver, is
ERFECTLY secure key agreement has been studied {ggy restrictive and that indeed in many practical scenarios,
cently by several authors [19], [6], [13], [2], [9], [7], [16]- especially if one considers the fact that every transmission of
Two possible approaches are based on quantum cryptograghy, js ultimately based on the transmission of an analog signal
(e.g., see [2]) and on the exploitation of the noise in COMMUNyhiact to noise, the adversary has some minimal uncertainty
cation channels. In contrast to quantum cryptography, Whigh, ¢ the signal received by the legitimate receivers.
is expensive to realize, noise is a natural property of every\syner [19] and subsequently Csiszand Kormer [6] con-
physical communication channel. In [13] and in [16] it Na§igered a scenario in which the opponent Eve is assumed

been illustrated how such noise can be used for unconditionq@y receive messages transmitted by the sender Alice over

secure secret-key agreement and, furthermore, that it is adzpanne that is noisier than the legitimate receiver Bob's

vanFagepus to combipe grror—control coqmg_and nyptogfalf_’@ﬁanneL The assumption that Eve’s channel is worse than the
coding in a communication system. Noise in communicatiqfiy channel is unrealistic in general. It was shown in [13]
channels has also been shown useful in other respects. In|ol; s assumption is not needed if Alice and Bob can also

and [4], for'mst'an'c.e, it was shovyn how to realize VarnoUssmmunicate over a completely insecure (but authenticated)
cryptographic primitives, such as bit commitment or Obl'v'ouBublic channel

transfer, based on a noisy channel.

I. INTRODUCTION

For the case where Alice, Bob, and Eve have access to
peepeated independent realizations of random varialile§”,
£ Z, respectively, with joint distributionPxy 7, the rate
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that the amount of information that Eve obtains abfuts Y over erasure channels (Scenarios 2 and 3 in Section V).
arbitrarily small. In other words, it is the maximd& such For Scenarios 1 and 2 it is shown that secret-key agreement
that for everye > 0 and for all sufficiently largeN there is possible if the intrinsic conditional information is positive.
exists a protocol, using public discussion over an insecure Btdr a generalized version of Scenario 2, in which Eve obtains
authenticated channel, such that Alice and Bob, who receilveth Alice’s and Bob’s information with a certain probability

XN = [Xy,---,Xny] and YV = [Y1,---,Yn], respectively, 1 — &, the new information measure is shown to be closely
compute the same key with probability at leastl — ¢, related toé and to a new, natural quantity measuring the
satisfying deviation of Alice’s and Bob’s information from statistically
N independent information. For Scenario 3 finally, we show that
I(5;VZ7) <e (1) a new protocol is more powerful than the previously known
%H(S) >R—¢ (2) brotocols.
and Il. THE INTRINSIC CONDITIONAL MUTUAL INFORMATION
H(S) > log|S| —e. (3)

. A. Motivation and Definition
!—Iere, V' denotes the co!lecuon of Messages sent over theThe following upper bound on the secret-key rate was
insecure channel by Alice and Bob, and" stands for proved in [13]

(21, Zy).

Remark: Note that this definition corresponds to tsteong S(X;Y]|Z2) £min{I(X;Y), I(X;Y | Z)}. (4)
secret-key rate as introduced in [11]. In contrast to all earlier
definitions of a rate made in the context of secret transmissiohying to reduce the quantity(X;Y | Z) in this bound, the
(e.g., of the secrecy capacity in Wyner's [19] and Caiszadversary Eve can send the random varigblaver a channel,
and Karner's [6] models), not only theate at which Eve characterized byP;,,, in order to generate the random
obtains information about the secret key, but tibial amount variable Z. Obviously
of information she learns about this key, must be arbitrarily ~ ~
small. However, it will be shown in a final version of [11] that S(XyY|Z2) L S(XyY||2) L I(XyY | Z) )
the secret-key rates with respect to the weaker and stronger -
definitions are equal. Hence we can restrict ourselves to thelds for every suct¥. A similar bound also appeared in [1].
stronger, more satisfactory definition. Inequality (5) motivates the following definition of the intrinsic

R K Th bl ¢ -k th Iconditional mutual information betweexi andY” when given
emark: Tne problem Of Secrel-key agreement has asgi which is the infimum off (X; Y | Z), taken over all discrete

been studied for the case where the channel connecting Al S8 dom variable<Z that can be obtained by senditify over
and Bob is not authentic, i.e., the adversary is also able to

modify or insert messages. It has been shown in [10], [1 1channel, characterized Hz .

and [18] that secret-key agreement can even be possible in thiPefinition 2: For a distributionPyy ~, theintrinsic condi-

case (if the distributionPxy  satisfies certain properties). tional mutual information betweeX and Y when givenZz,
The following lower bound o5 (X; Y||Z) is proved in [11] denoted by/(X;Y | Z), is

(and first in [13] for the weaker definition), and follows from

a result by Csisar and Korner [6]. I(X;Y | 2)

Theorem 1:For all distributionsPxy z we have —inf {I(X;Y |Z): Pyy s = Z Pxy oy - Pz|z}
max{I(X;Y)—I(X; Z),[(Y; X)-1(Y;2)} < S(X;Y||Z). =2
It has been first shown by an example in [13] that the secrg\(here the infimum is taken over all possible conditional

key rateS(X;Y||Z) can be strictly positive even when bothd'ST‘Eb‘%“OUSPZWZ- ditional inf . isfies the followi
I(X;Z) > I(X;Y) and I(Y; Z) > I(Y; X) hold. e intrinsic conditional information satisfies the following

We give a brief outline of the rest of this paper. In Section fl'€dualities:

we define a new conditional information measure and show

that this measure gives an improved upper bound on the 0< (XY | Z) < I(X3Y)
secret-key rate. In Section Il we formulate some fundamental I(X;Y | 2) < I(X;Y | Z)
properties of the secret-key rate. Sections IV and V address and I(X;Y | Z2)<I(X;Y | Z)

the problem whether secret-key agreement is always possible

when this new upper bound is strictly positive. We considevhere Z is generated by sending over an arbitrary channel.
this for the cases whel¥, Y, andZ are generated by sending ] . .
a binary random variable over independent channels (Scenaria-?]eorem 2: For arbitrary random variableX, Y, and Z,
1 in Section 1V), and wher¢ is generated by sendin§ and we have

1Throughout the paper, all logarithms are to the hase S(X;Y||Z) S I(X;Y ] Z). (6)
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IX.Y1Z)
H(Y)

H(X) H(Y)

I(Y;Z1X)

Fig. 1. Two random variables.
I(XZEY)

Proof: Bound (6) follows from the definition of the rig 5 Three random variables.
intrinsic information and from inequality (5). O

Theorem 2 implies in particular that secret-key agreement
can be possible only if(X;Y | Z) > 0. The following simple
example shows that the intrinsic conditional information can
be equal tod, and secret-key agreement is hence impossible,
even when both/(X;Y | Z) > 0 and I(X;Y) > 0 hold.
Thus the bound (6) is a strict improvement of bound (4). Let
X=Y=2=1{01,23}

Pxy7(0,0,0) = Pxyz(0,1,1) = Pxy~(1,0,1)

1
= PXYZ(l,l,O) = 3
and
1 Fig. 3. Visualization of[(X:;Y | Z).
PXYZ(2,2,2) = PXYZ(3, 3, 3) = T

Then I(X;Y) = 3/2 and I(X;Y|Z) = 1/2 (note that Note thgt ifI(X;Y) < I(X;Y|Z),sgcharepresentation is
Z=X@Yif X,¥ €{0,1}), but I(X;Y | Z) = 0. To see also possible, but one of the regions is r!ege_xtlve. For example,
this, consider the random variab® generated by sending WhenX andY are independent symmetric bits, afid= X &
over the channel characterized by Y, thenl(X;Y)=1(X; 2)=1(Y; 2)=0, but [(XY; Z)=1.
. For a systematic treatm(e;n_t of such repres_er;]t[aé;()n;,lsg)e [20].

P (0.0) = Pt (0.1) = Po (1.0) = Por (1.1) = = We are now interested in a representation/ ok ; .

ZlZ( 0 ZlZ( 1 ZlZ( 0) ZlZ( 1 2 When given arbitraryX, Y, and Z (i.e., even when
and R(X;Y;Z) < 0), we consider all the random variabl&sthat
can be generated by sendiggjover a channelPz| ;. Note

P712(2,2) = Pz 2(3,3) = 1. that I(X: Z) < I(X:Z) and I(Y; Z) < I(Y:Z) hold for
Intuitively, giving the side informatiorZ “destroys” all the Such random variable%. The particularZ which minimizes
information betweenX andY’, but generates new conditional (X;Y | Z) fulfills R(X;Y;Z) > 0. (This means that
mutual information (that cannot be used to generate a sedfifre are no negative regions in the graphical representation,
key). In contrast tof(X;Y | Z), the intrinsic information although this may be the case far, Y, andZ.) The quantity
I(X;Y | Z) measures only theemainingconditional mutual {(X;Y | Z) can be directly associated with one of the regions
information betweert andY” (possibly reduced by giving), (see Fig. 3). The random variablis the one that maximally
but not the additional information betweenX andY brought reduces the size of this region.
in by Z.
Ill. SECREKEY AGREEMENT WITH

B. A Graphical Representation GENERAL RANDOM VARIABLES

Let X and Y be random variables. Then the quantities As stated above, the intrinsic conditional mutual information
H(XY), H(X), H(Y), H(X|Y), H(Y'|X), andI(X;Y) (XY | Z) defined above gives a new upper bound on the
can be graphically represented (see Fig. 1). Note that the uniigret-key rate, and in particular, secret-key agreement is
of all inner regions corresponds #(XY"). _ impossible unlesg(X:;Y | Z) > 0. It appears plausible that

The case othreerandom variablesY, Y, and Z is more  thjs condition is also sufficient for a positive secret-key rate.
complicated. Assume first thd{ X;Y) > I(X;Y | Z). Let .

Conjecture 1: Let Pxyz be such that/(X;Y | Z) > 0.

RX;Y;Z):=I(X;Y) - I(X;Y | Z) Then S(X;Y|Z) > 0.

(one can easily verify tha®(X;Y; Z) is symmetric in its three  An even stronger conjecture would be th&tX;Y||Z) =
arguments). It is obvious that a simple graphical representatibfX'; Y | Z) holds for every distributiorPxy 7. In the follow-
is possible (see Fig. 2). ing sections we prove the validity of Conjecture 1 for several
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special scenarios. It is a fundamental open problem to prove
or disprove the conjecture for the general case.

As a preparation for the analysis in the following sections
we prove some important and basic properties of the secret-
key rate. The three lemmas below are very intuitive and follow
quite directly from the definition of the secret-key rate. Lemma
3 states that Alice and Bob cannot increase the secret-key rate
by ignoring certain realizations of the random variablésind
Y. We say that Alice and Bob obtain new random variables by Z
restriction of the ranggs‘ the)f discard realizations that do notrig. 4. Scenario 1.
lie in certain subset’ and Y of X and). Lemma 4 states
that processing( andY” cannot increase the secret-key rate.  Proof: Obviously, only condition (1) in the definition of

Lemma 3:Let X, Y, and Z be random variables with _the §ecret-key S\?te is affected. Becauss; V[Z,U]Y) < «
rangesY, Y, and 2 and joint distributionPxy z. For ¥ < & implies I(:5; VZ™) < ¢, the lemma follows. -
and) < Y, we define a new random experiment with random Theorem 6 is an immediate consequence of Lemmas 3, 4,
variablesX and Y (with rangesX and ), respectively). If gnd 5.

Q is the event thaty € X andY € Y, and if P(Q) is its o _ -~ i
probability, then the joint distribution ok andY with z is ~ Definition 3: We say that¥’ andY” are generated from¥
defined as follows: and Y with positive probabilityif one can obtain fromX and

Y random variablest andY’ by restriction of the ranges (see
above), and the random variabl&sandY by sendingX and
Y over two channels, specified By | ;- and Py 5.

Cu R Cs Y

PXYZ(‘Tvyv Z)
Peyy(w.y,2) = W

for aIJ (a:,y, z) € XxYPx2Z. (This is a probability distribution ~ Theorem 6:Let X, Y, Z, and U be arbitrary random
for X x Y x Z.) Then variables, and letX and Y be generated fromX and Y

with positive probability. ThenS(X;Y||[Z,U]) > 0 implies

S(X;Y|Z) > o.

In other words, the secret-key rate cannot be increased by

restricting the ranges ok’ andY'. ] ] ) . ]
Proof: The secret-key rat§(X;Y||Z) is the maximum  The first special scenario, which we analyze completely in

key-generation rate, taken over all possible protocols betwed#$ section, is defined as follows.

Aliqe and Bob. Ope possib!e strategy. i; to restrict the ranges ofscenario 1.Let R be an arbitrary binary random variable,
their random variables. With probabiliti?($2), they both re- nq |et x| v, and Z be arbitrary discrete random variables,
ceive random variableX andY’, respectively, and inequality generated by sending over independent channets,, O,
(7) follows. D and 0 (see Fig. 4), ie.,

S(X:Y12) 2 P(Q) - S(X; Y 2). (7)

IV. NoISY VERSIONS OF ABINARY SIGNAL

_tl_herg.nla}bﬂf:tl__et X, Y, Z, X, andY be random variables Pxyz\r=Px|\r Py |r Pz|r (8)
w Istribution In other words, X, Y, and Z are statistically independent
Pxyzxy =Pxvz - Px|x Prly when givenR. The following is a different but equivalent

characterization of Scenario 1. There exXisK A < 1 and
where Px| x and Py |y are arbitrary conditional probability probability distributionsP{", P&, P& PP P& and

distributions. Th 2
istributions. Then pé) such that
S(X;Y|2) < S(X;Y12). Peyz =P PO PP+ (-2 PP PP PP

Proof: As in the proof of Lemma 3, the statement followd-€, Pxyz IS a weighted sum of two different distributions
because it is one of the possible strategies for Alice and BEKET the set’ x V' x 2 that both correspond to independent
to sendX andY over two channels, and because the secré@ndom variables with range®, ), and Z. The results of this

key rate is the maximum key-generation rate taken over &gction hold for all distributions with this property.
possible protocols. O The main result of this section is the following theorem

_ . characterizing completely the cases for whitfii¥;Y||.Z) > 0
Lemma 5 states that if Eve has access to a random Va”a#ﬁ &cenario 1, i.e., for which secret-key agreement is possible

U (|r! addition to %) that can be interpreted as S|de.|nformat|05‘h Iprinciple, and implying that Conjecture 1 is true in this case.
provided by an oracle, then the secret-key rate is not greate

than in the original situation. Theorem 7:In Scenario 1, the following conditions are
equivalent.

A) I(X:Y|Z) > 0,

B) S(X;Y||Z) > 0,
S(X;Y|[Z2,U]) < S(X;Y12). C) I(X;Y |Z) > 0.

Lemma 5:Let X, Y, Z, andU be arbitrary random vari-
ables. Then
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The proof that A) implies B) is subdivided into several stepsemma 10 below leads, from Eve’s error probability when
stated below as lemmas. We begin with the special case whguessing these bits, to a lower bound on the secret-key rate.
Ris a symmetric binary random variable and all three channelsProtocol A is computationally efficient, but it is not efficient
are binary-symmetric. This special result is not necessary farterms of the size of the generated secret key. There exist
the proof of Theorem 7, but we show it in order to presemariants of the protocol, using parity checks instead of repeat
the protocol and some estimates that will be useful laterodes, that are much more efficient in terms of the achievable
In Appendix A we prove a result similar to Theorem 7 fokey-generation rate [12].
continuousrandom variablesX, Y, and Z generated from  We show first that for all possible choices afande, in

independent binary-input channels. particular, even if Eve’s channel is superior to both Alice’s
and Bob’s channel, Bob’s error probabilifsy; about the bit
A. Binary-Symmetric Channels sent by Alice decreases, fa¥ — oo, asymptotically faster

Let us first consider the following special case of Scéban Eve’s error probability,y when she uses the optimal

nario 1. Let Pr(0) = Pgr(1) = 1/2 and consider three Strategy for guessing this bit. (Note. thal is an average ,
. : . . error probability, and that for a particular realization, Eve's
binary-symmetric channel6’s, C’p, and C'w with bit-eror o ooty will typically be smaller or greater th )
probabilities«, 3, ande, respectively, i.e., we have P y ypically 9 .

Lemma 8: If Protocol A is used in Scenario 1.1, there exist
Pxr(0,0) =1—a, Py r(0,0)=1-5, real-valued positive constantsand ¢ with b < ¢ such that
and Pz r(0,0)=1—-¢ gy <bY andvyy > cV for sufficiently largeN.

For the proof of Lemma 8, we need the following fact on
where0 < a < 1/2,0< 8 < 1/2,and0 < e < 1/2. We can  pinomial coefficients.

assume here that = 3, i.e., that Alice’s and Bob’s channels o
are identical. If, for examplep < 3, Alice can cascade Lemma 9:For sufficiently large evenV, we have
her channel with another binary-symmetric channel with error < N ) 1

> ——— .2V,

probability (3 — «)/(1 — 2«) to obtain error probability3. >
(In this particular case of binary-symmetric channels it is not N/2 VarN

even necessary to assume= (. The statement of Lemma  pyoof: Stirling’s formula (see, for example, [8]) states
8 also holds ifa # 3 when the party with the greater errofpat

probability is the sender and the other party is the receiver in

Protocol A described below.) n!/((nfe)” - V2rn) — 1, n— 0o

Scenario 1.1.The distributionPrxy ~ is defined by the fact

that all the random variables are binary and symmetric, and %9d thus we have for sufficiently large even

NN V2rN - &N 1

N N! 1 .
P 0,0) = Py r(0,0)=1—a and Py g(0,0)=1—¢ = > - 9N
< 12(0.0) = Py (0.0) 21(0.0) (72 =T 23 S = T
where0 < o < 1/2 and0 < ¢ < 1/2. _

and this concludes the proof. O

In Scenario 1.1, Alice can send a randomly choserChit

Bob by the following protocol, which was already described Proof of Lemma 8:Let a., (r,s € {0,1}) be the probabil-
in [13]. ity that the single bitd sent by Alice is received by Bob as

r and by Eve as. Then
Protocol A. Let N be fixed. Alice sends

CHX,CBXo, CBX a = (1 - a)*(1—¢) + o’
[ S¥ 1, S 2,777, 2] ]\‘r] a01:(1—a2€+062(1—5)
over the public channel. Bob computes a0 = a1 = ol — o).
(CeX)@dY, -, (CdXn)DYN] Let p, v be the probability that Bob accepts the message sent
L . by Alice. If we assume (without loss of generality) thistis
and accepts exactly if this is equal to eithér0,---,0] or even, then
[1,1,---,1]. In other words, Alice and Bob make use of
a repeat code of lengttv with the only two codewords 3 — r N _ r 25 — 202N (9
[0707"'70] and [171771] /1\ Pa,N (alo—’_all) Pa,N ( “ “ ) ( )
It is obvious that Eve’s optimal strategy for guessifigs N > 11 (N N2 N2 (10)
=9 Do N N/2 00 01
to compute the block .
(CeX)®Z, -, (Co®XN)P Zn] The last expression is half of the probability that Bob receives

the correct codeword, and that Eve receives the same number
and guesC' as 0 if at least half of the bits in this block of 0's and1’s, given that Bob accepts. Note that (10) gives a
are 0, and asl otherwise. Note that although it is not thdower bound on Eve’s average error probability when guessing
adversary’s ultimate goal to guess the hitssent by Alice, C for all possible strategies because in this symmetric case,
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Eve obtains no information about the Kit, and half of the  Let X and Y be defined as follows. If Bob accepts, let
guesses will be incorrect. From Lemma 9 we conclude thatX = C and Y = C’, and if Bob (publicly) rejects, let

1 1 1 N N X =Y = “reject.” We show that (13) holds for sufficiently
r2 s ———=-2" - Japor
w25 Pox VoiN 0001 large V. If Bob accepts then
_ O (2y/aa)™ H(C|C") = h(b"™) < 26" - log (1/6V)
VN Pa,N =20 - N -log (1/b) < &

for some constanC, and for sufficiently largeV. For 0 < for sufficiently large N, where
e < 1/2 we have

Vawao = V(1 — 20+ a? — £ + 2ae)(a? — 2ae + ¢)
2 (11) is the binary entropy function, the first inequality follows from

e Jensen’s inequality, and the reason for the second inequality
For ¢ = 0 equality holds in (11), and for > 0 the greater is that
factor of the product under the square root is decreased by the
same value by which the smaller factor is increased. Hence —plogp > —(1-p)log(l-p)
the square root of this product is greater thar- o. (For for p < 1/2. Moreover,
e = 1/2 the factors are equal, and the left-hand side of (11)

h(p) = —p log p — (1 - p) log (1 — p)

is maximal, as expected.) Because H(C|Z)= > Py#) -H(C|Z=32)
r 2€ZN
(1-20+20%)"N < pay 51?” ) 2 Eylpp gl = v 2 ¥
: : = by )| 2 By sl=7w=c¢
— (1 - 20+ 20" + (20 — 2a2)" 2 Pe 2l = B4 W2l =N
<2-(1—-2a+2aH)N (12) wherepg : is the probability of guessing’ incorrectly with

. . o the optimal strategy given that = 2. Note thatpr » < 1/2,
we conclude thaly < b™ andyy > ¢V for sufficiently hencei(pp:) > pr.: for all 5. Given that Bob publicly
large v, rejects, we have

b= (20— 207)/(1 - 20 + 2a%) HX|Y)=H(X|Z)=HX|V)=0.

and \o o
Fromp, » > 0 we conclude thaf (X;Y") — I(X; Z) > 0.

¢ = 2y/agoaor /(1 — 2+ 2a%) — § 0

(where é can be made arbitrarily small for sufficiently large
N). From the above, we conclude that> & holds for B. General Binary-Input Channels and the Proof of Theorem 7

sufficiently smallo. O First we show that the above results hold even when Eve

The fact that Eve has a greater error probability than BGROWS £ preciselywith a certain probability smaller thah
when guessing” does not automatically imply that Eve has d NiS i the case iZ is generated frontt by a binaryerasure
greater uncertainty about this bit in terms of Shannon entropfy/@nnel instead of a binary-symmetric channel, i.eZifs

and hence thaS(X:;Y]|Z) > 0. The next lemma, togethere'iher equal to a special erasure symiglor elseZ = R.

with Lemma 8, nevertheless Implles that the Secret-key rate iSS(genario 1.2Let R, X, andY be as in Scenario 1.1, but let
positive in Scenario 1.1. Z be generated fron® by a (possibly asymmetric) binary era-

Lemma 10: Let X, Y, andZ be arbitrary random variables, Suré channel (with erasure symid) C'y,, independent of the

and letC be a bit, randomly chosen by Alice. Assume thaR@ir (Ca; Cr), and with transition probabilitieB’; | r(A, 0) =
for all NV, Alice can generate a messagefrom X~ (where ¢ > 0, Pz r(0,0) =1- 6, Pz r(A1) = ¢ > 0, and
XN =[X,,---,Xy]) andC (and possibly some random bits)PZIR(lv H=1-4"
such that with some probability, v > 0, Bob (who knows | emma 11:If Protocol A is used in Scenario 1.2, there
M andY™") publicly accepts and can compute a 6ft such exist real-valued positive constariisand ¢ with b < ¢ such
thatProb [O 75 O/] < bV for someb > 0. If in addition, given that By < »N and YN = N for Sufﬁcienﬂy |argeN_
that Bob accepts, for every strategy for guesgihghen given Proof: We show first that we can assume without loss
M andZ" the average error probabilityy is at least™ for  of generality thatC%, is symmetric. Lets < &, and let an
somec > b and for sufficiently largeV, thenS(X;Y[|Z) > 0. oracle be given that tells Eve the correctKitvith probability
Proof: According to Theorem 1 is suffices to show thats’ — §)/¢ if R = 1 and Z = A. According to Lemma 5,
Alice and Bob can, for somé/, construct random variablesthe additional informatiori/ provided by this oracle cannot
X andY from X andY™ by exchanging messages over afhcrease the secret-key rate. The random varighléogether
insecure, but authenticated channel, such that with the oracle, is equivalent to a random variable generated
I(X;Y) _ I(X; Z) >0 (13) from R_ py a symme_tric_bi_nary erasure channel_with erasure
probability 4, and which is independent of the p&f.,, Cx).
with Z = [ZN,V], whereV is the collection of all messages If § = 1, the lemma is trivial. Le$ < 1, and let0 < p <
sent over the public channel. min{é, 1—6}. For sufficiently largeV, the probability that the
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number of bits (out ofV bits) known to Eve is even and lies Proof: First we give an alternative characterization of
between(1—-6—p)N and(1—6+p)N is at leastl/3. We can the independence of the three channels, i.e. Pl r =
assume without loss of generality théitand(1—6—p)N are  Px|r - Py |r - Pz r- (We sometimes omit all the arguments
even integers. (Otherwisg,can be chosen slightly smaller inof the probability distribution functions. In this case, the
order to fulfill this.) We give a lower bound on Eve’s averagstatements hold for all possible choices of arguments. For
error probabilityyx about the bit sent by Alice, given thatexample,Px |y = Px stands forPx |y (z,y) = Px(x) for

Bob accepts. As in the proof of Lemma 8, we obtain a lowel z € X andy € ).) From

bound on Eve's error probability, by taking a (small) part

of all positive terms adding up tey. We have Przir=Y_ Pxvzir=)_ Pxir-Prir-Psir
reX zeX
r>1'(1—2a+2a2)1\"1' (1-6—p)N =Pyr-Pz|r
=3 Py 3 \(1—6-p)N/2
(1—q)p 0s*o2 and
{(1—@)2—#@2} Pr-Pyz\pPxiyvzr=Pxyzr=Pr-Px |- Py |r Pz |r
1—64p)N/2
o’ ( el we conclude thatPx |y zr = Px|r and, analogously, that
P — | |
(1-a)?+a? Pyixzr = Py r and Pz xyr = Pz &
S 1 1 1 i) impliesii). Let I(X;Y | Z) > 0. Assumel(X; R) = 0.
T2 pon 3 27(1 — 6 — p)N ThenPx |yzr = Px|r = Px, andX is also independent of

(1= 20+ 2@2)5_,,21_5_,,(a _ o?)l_é*”]N Y Z (and hence of?). Thus

for sufficiently large/N. Here we have made use of Lemma [(XY[2)=H(X|2) - HX|YZ) = H(X) - H(X)

9. The first expression i$/2 times a lower bound on the =0
probability that Bob receives the correct codeword, that Eve . , . .- )
knows an even number of bits which lies betwéen 6 — p) N Yihich is a contradiction. We conclude thB(LY; 17) > 0 and

and(1-6+p)N, and that she receives the same numbérf 2}/(; |s§;nTe(t)r|cT;1;gnument thd(Y’; &) > 0. Finally, assume
and1’s in her reliable bits, given that Bob accepts. In this casg, o
Eve obtains no information about the bit sent by Alice. The I(X;Y|Z)=H(X|Z2)+ H(R|XZ)
expression$l —a)?/((1—a)?+a?) anda? /((1—a)*+?) are —
the probabilities thaft = X and R # X, respectively, given
that X = Y. Bob’s error probability, given that he accepts, HX|Y2Z) w
is By = (2a — 2a*)™ /p, ~. For sufficiently small (positive) 0

p we have HXR|Z)-H(XR|YZ)
=H(R|Z)+H(X|RZ)

N —

0

(1 =20 +2a2)P7P21 =07 (0 — H)170FP > 20 — 202

becausel > 0 and1 — 2« + 2a? > 2a — 20”. The lemma is -~ H(R|YZ)-H(X|RYZ)
proved because of inequality (12). O ﬂ—’
We now consider the general Scenario 1. The following =HX|R)-H(X|R)=0

lemma states equivalent characterizations of the condition. . -
I(X;Y|Z) > o. which is a contradiction. Henc# (R | Z) > 0.

ii) impliesiii). Let I(X;R) > 0, that is, X and R are
Lemma 12:In Scenario 1, the following three conditionsnot statistically independent, which implies that there exists

are equivalent. such thatPy | g(z,0) # Px | r(z, 1), i.e., such that one of the
) I(X;Y|Z) > 0. inequalities of (14) holds. Because
i) I(X;R) >0, I(Y;R) >0, andH(R| Z) > 0.
i) There existz,s’ € X such that > Pxr(z,0)= Y Px|g(z,1) =1
zCX zCX

, , there must as well exist an element &fsatisfying the other
Pxr(,0) > Pxr(x,1) and Px r(2",0) < Px|r(¢",1)  jnequality of (14). Similarly we conclude the existence of
(14)  appropriatey andy’ from I(Y'; R) > 0. Finally, P (0, 2) €
{0,1} for all = € Z with Pz(z) > 0 would imply that
H(R|Z) = 0. Hence (16) holds for some € Z.
Py |r(y,0) > Py | r(y,1) and Py | r(y’,0) < Py |r(¥/, 1) i) impliesi). Let z, =/, v, %/, andz be as in iii). It suffices
(15) to prove thatl (X;Y | Z = z) > 0 because’®z(z) > 0. This is
equivalent to the statement th&t andY are not statistically
and there existg € Z such that independent, giver¥ = ». We show that

there existy, v/ € Y such that

Pz(z)>0 and 0<PR|Z(O,Z)<1. (16) Px|yz($,y,2)>Px|yz($,y/,2). (17)
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Fig. 5. The random variables in the proof of Theorem 7.

For bothy = y andy = 3’ we have
= Px|r=0() - Pr|y2(0,9,2)

+ Px|r=1(2) - Pr1v2(1,7,2).
BecausePx | r—o(x) > Px|r=1(x), in order to prove (17),
we have to show

Priyz(0,y,2) > Pr|yz(0,v, 2)
and because QP |y z = Py | r-Prz/(Py | z-Pz), inequality
(18) is equivalent to

Py | r(y,0)
Py z(y,2)

which follows from

Py | p=o(¥) - [Py | r=0(y) - Pr|z=-(0)

+ Py | r=1(4') - Pr|7z=-(1)]
> Py |r=o(y) - Py | r=o(¥)
> [Py | r=0(¥) - Pr|2=2(0) + Py | r=1(¥)
“Priz=-(1)]- Py r=0(¥)-

Both inequalities in (19) follow from the fact that <
Pr|z=-(0) < 1, and because of (15). O

PX|YZ($agaZ)

(18)

> PY|R(y/70)
Py z(y,2)

(19)

We are now ready to prove Theorem 7.

Proof of Theorem 7:Clearly, B) implies C) by Theorem 2,
and C) implies A) by the definition of the intrinsic information.

We show that A) implies B). Given that(X;Y | Z) > 0, we
construct, fromR, X, Y, andZ, random variablest, X, Y,
and U with the following properties (see also Fig. 5).

1) X andY are generated fronk andY’, respectively,
with positive probability.
R is binary and symmetric, and and Y can be
interpreted as being generated by sendigver two

2)
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For such random variableX, Y, and U, we have by
Lemma 11 thatS(X;Y||[Z,U]) > 0, and with Theorem 6
we conclude thaS(X;Y||Z) > 0. Hence it remains to show
that suitable random variablds, X, Y, and/ exist.

According to Lemma 12, there exigtx’ € X andy,?’ € Y
such that (14) and (15) hold. L&f andY” be obtained fron¥{
andY as follows. First, the ranges df andY are restricted
to {z, 2’} and{y, y'}, respectively, and secondly, the resulting
random variablesX’ and Y’ (which correspond to a new
random experiment) are made symmetric. This is done by
sendingX’ over the following channel to obtaiki (we assume
Px(z) > Px(z’) without loss of generality):

1
1
&wﬂwz“ﬂﬁaa

PXlX/(].,./L'/) = 1
PXIX’(O’-I/) =0.

In an analogous wayl” and R are obtained fron¥” and R,
respectively.

According to Lemma 12 there exists € Z such that
Py(z) > 0and0 < Pg| z(0,7) < 1. Let the random variable
U be defined as follows. I # z, letU = R, and if Z = z,
let U = A. Intuitively, the information/ can be thought as
being provided by an oracle that tells Eve the corrBctf
Z # z. Such an oracle can only decrease Eve’s average error
probability and, according to Lemma 5, the secret-key rate.

It remains to show thak, X, Y, andU have all the stated
properties. The Properties 1) and 3) are satisfied by definition
of the random variables. It remains to prove Property 2). First,
it is clear thatR, X, andY are binary and symmetric. For the
rest, we consider the cade&;(0) > 1/2 and Px/(x) > 1/2.

The other cases are analogous. We have to show

Py (0,0) > Py (0) - Pa(0) = 1/4

which is sufficient becaus® and X are symmetric binary
random variables.

PXR(O,O) = PXRX,R(O,O,a:,O)
= PR(O) 'PR|R(070) 'PX’|R(‘7;70) 'P)~(|X’(07x)
_1 PX’|R($7O)>1
o 4 PX/(Z’) 4
becausePx | gr(x,0) > Px/|g(z,1) and0 < Pr(0) < 1.
An analogous result can be proved f6r As in the proof of
Lemma 8, the error probabilities of the two channels can be
made identical, and we have proved Property 2). The theorem
now follows from Lemma 11, Theorem 6, and Lemma 10.

independent binary-symmetric channels with identic@iote that in this application of Lemma 10 the event that Bob

error probabilitya < 1/2.
3)
R as a random variable generated by sendiigver

accepts means that Alice and Bob both accept a sufficiently

Z := [Z,U] contains exactly the same information aboyrge numberV of consecutive realizations of and Y (if

Alice does not accept, she sentds= “reject” over the public

a binary erasure channel (which is independent of th@annel), and that Bob accepts the received message sent by
channels from (3)) with positive erasure probabilitiegjice. (Of course, this would be a very wasteful and inefficient

§>0andé > 0.

way of generating a secret key in practice. For example, it is
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not necessary that th¥ realizations ofX andY accepted by
Alice and Bob are consecutive.) This concludes the praaf. X

Remark: The condition thatk is abinary random variable | l

is crucial in Theorem 7. To see this, consider the following l

example: LetR be uniformly distributed over the s&® := M
z

{r00,701,710,711}, and letX, Y, and Z be binary random
variables, generated fronk by the following independent
channels (let be the Kronecker symbol, i.e};; = 1if ¢ = j,
and otherwise’;; = 0):

Px | r(z,7ij) = bz
Py | r(y,7i5) = by; x—= > =Y
Py r(z, i) = 6.005-
Note that forallr € R, Z = X @Y, thatis,I(X;Y | Z) = 1.
On the other hand[(X;Y") = 0, and henceS(X;Y|Z) = 0. M
In fact, any distributionPxy z can be seen as generated by
sending a random variablg over three independent channels
for someR with |R| < |X|-|Y|-|Z]. Such a random variable
R can be defined as follows. Let

R = A{rey: |(z,y,2) € ¥ x Y x 2}

z
(b)

Fig. 6. Scenarios 2 and 3. The boxes stand for binary-symmetric and for
P (7 . ) — 5 erasure channels, respectively. (Note that the erasure channel in Scenario 2
X | R\ Tayz) = Oz is not binary.)
Py | p(U,Tay=) = b5y
and channels with positive erasure probabilities »x and1 —ry,

Py r(Z,r2y=) = 022 respectively.

The two scenarios are illustrated in Fig. 6.

V. TOWARDS THE GENERAL CASE: Prior to the analysis of Scenarios 2 and 3 we show that under

PROTOCOL A IS NOT OPTIMAL a condition which appears to be satisfied most likelyXifY",
and Z are general random variables willi.X;Y | Z) > 0,
IIhrti:‘re exist random variablés andY”, which can be generated
®0m X andY with positive probability, and side information
% such thatX, Y, and [Z,U] correspond to one of the
i

In this section we assume thaf and Y are completely
general random variables, and that Eve obtains her informat
from a random variable that is generated by sendih@nd
Sconatio s that 115 165e i 10 analyse than the completef CT1105 2Of 3 Theorem 6 then implies ek ') > 0

o - L S(X;Y||[Z,U]) > 0. The proof of the following lemma is
general situation. Additionally, more general situations can ergIated to one of the arguments in the proof of Theorem 7.
reduced, by the methods of Theorem 6, to such a scenario
(with respect to the question whether secret-key agreement ikemma 13:Let I(X;Y) > 0. Then Alice and Bob can
possible). generate symmetric binary random variabl€ésand Y from

We approach the general situation by studying two extremXl andY with positive probability such thak andY have a
cases. For Scenario 2 below, the statement of Conjecture Bysnmetric joint distribution as given in (20) for some< 1/2.
shown to be true, whereas for Scenario 3, this problem remains Proof: BecauseX andY are not statistically independent
open. Also for Scenario 3, we prove that Protocol A is ndhere existz,z’ € X andy,y € Y satisfying
optimal. A new protocol is shown to be strictly stronger with

O o P Jy) > P > P ) 21

respect to the possibility in principle of secret-key agreemer;itr.]d X1y (#0) (@) i@ y) (21)
Scenario 2.The random variableX andY are binary and /

P P P . 22

distributed according to vix(,e) > Pr(y) > Pryx(y, )A A( )

11—« Alice and Bob can generate random variablésand Y by

Pxy(0,0) = Pxy(1,1) = restricting the ranges o and Y to {z,z’'} and {y,v'},

2 20 5
Pxy(0,1) = Pxy(1,0) = « (20) respectively. ThenX is sent over the following channel (we
’ ’ 2 can assume without loss of generality ti#ag(z) > 1/2):
for somea < 1/2. The random variableZ is generated by 1
sending[X, Y] over an erasure channel with positive erasure PX|X(07$) =3 P, (@)
probability 1 — 7. P L) j;_’f
. . . X|X( x) =1 )‘(|X(07$)

Scenario 3.The random variableX andY” are distributed P o(1,2) =1
according to (20), an& = [Zx, Zy], whereZx and Zy are XXAD / -
generated by sending andY over two independent erasure PX|X(07$ )=20
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It is obvious thatP¢(0) = P¢(1) = 1/2. The symmetrically ~ Theorem 14:In Scenario 2, the following four conditions
distributed random vaIiabIQ can be obtained fronY” in an are equivalent:
analogous way. TheX andY are distributed according to ) I(X;Y |2Z) >0,
(20) with i) 1—7>a/(1-a),
iii) Protocol A allows secret-key agreement,
a=1~-Pgy(z,9)/(2 Py(x) - Py(y)) iv) S(X;Y]|Z) > o.
Proof: It remains to show that i) implies ii), i.e., that
I(X;Y | Z) = 0 holds whenevel — r < «a/(1 — «). Let
— P NI . P Pl the random variableZ be generated fron¥ by the following
@ =Pey(@9)/@- Py(o)- By (W) channel: ifZ = A, Z = [0,1], or Z = [1,0], thenZ = A.
if P.(y) < 1/2. In both cases we have < 1/2 because of WhenZ = [0,0] or Z = [1,1], then Z is defined to be equal

if Py(y) > 1/2, and

(21) and of (22). O o~z with probability
If, for X andY obtained as in Lemma 13, there exists 1 - 2a (<1)
# € 2 such that the conditional probabilitieBs v | ,_. (4, 5) r(l—a) "7

are positive for all(s,j) € {0,1}*, then there exists side
informationU such that/ equalg.X, Y] with some probability
(that depends opiX, Y]), but wherel/ contains no information

and equal toA otherwise.
We show that/(X;Y | Z) = 0. It is obvious that

aboutX orY otherwise, i.e., the pajz, U] can be interpreted I(X;Y|Z=100,0)=1(X;Y|Z=][1,1]) =0.
as being generated by sendipg, Y] over an erasure channel
with positive erasure probability. Because of

We conclude that very general situations can be reduced to B B a
Scenario 2, in whiclZ is obtained by sendingX, Y] over an Pyy7(0,1,A) = Pxyz(1,0,A) = 3

erasure channel. In an analogous way, general distributions can
be reduced to Scenario 3. However, it appears to be difficult36d

decide in general which reduction leads to the strongest results. - -
PXYZ(Ovov A) = PXYZ(lv 1 A)

. . 11—« 11—«
A. Analysis of Scenario 2 =— (I-7r)+ T
Scenario 2 has been defined above as the symmetric situ- 1— 2«
ation whereX andY are distributed according to (20) with ’ <1 - m)
«a < 1/2, and whereZ is obtained by sendin¢X,Y] over o
an erasure channel with erasure probability ». We derive D)

a condition for when Protocol A (with parametéy) al- ) o _
lows secret-key agreement. Bob'’s conditional error probability @nd Y also are independent when givéh = A, i.e,,

when guessing the bit sent by Alice, given that he accepts fig¥:Y | Z = A) =0. U
30 — 1 N < a \V B. Erasure Probability, Deviation from
Py = Parn S \1-a Independence, and Intrinsic Information

N N - In this section we show that a property of the intrinsic
wherep, v = o + (1 —«)" is the probability that Bob jnformation which is similar to the implication from i) to i) in
accepts the received block. Given that Bob accepts, Eve (Usifigborem 14 can be proved also in the case of general random
the optimal strategy) guesses the bit sent by Alice correcifyriaplesy andY. Namely, we show thal(X;Y | Z) = 0 if
unless she receiveg t|_rr_1es_ the erasure symbdl. Inthe latter gye knowsX andy precisely with some positive probability,
case her error probability i/2, independently of her strategy.anq if the joint distribution ofX andY is “too close” to an
Hence Eve’s error probability, given that Bob accepts, is  «independent distribution.” We have to define an appropriate
measure for the “deviation from independence” of the joint

v =z-(1-rN. distribution Pxy of the two random variable¥ andY .

b | =

Definition 4: Let X andY be random variables with ranges
and ), respectively, and joint distributiofxy . Let

F(Pxy) := min < max <M)

Using Lemma 10, we conclude that Protocol A works angv
allows the generation of a secret key if

L=r>1—% xv \(@)eXxy \ Qxy (7, y)
Theorem 14 shows that Protocol A is optimal in Scenario 2 i . max <4QXY($’y)))
eorem SNows that Frotoco IS optimal In Scenario 2 In (2,)EX XY ‘ny(‘r7 y)

the sense that someprotocol allows secret-key agreement in
principle, then Protocol A also does. Another consequencewffiere the minimum is taken over all probability distributions
Theorem 14 is that Conjecture 1) is true in Scenario 2.  Qxy for which X andY are statistically independent, and
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where we sed/0 := 1 and¢/0 := oo for ¢ > 0. Thedeviation C. Analysis of Scenario 3

dina(Pxy) Of Pxy from independences defined as In this section we analyze Scenario 3. kebe the probabil-

1 ity that X # Y, and letrx andry be the probabilities that Eve
dina(Pxy) = 1— m doesnot receive the erasure symbol from her (independent)
channels. We assume here that > rx. For fixed o and
where we setl /oo := 0. ry, we prove three different upper bounds ox with the
For every Pxy we have property that secret-key agreement is possibteifis smaller
than at least one of these bounds. Moreover, a new protocol is
0 < dia(Pxy) <1, (23)  presented that is applicable for a larger class of distributions

P than Protocol A, hence proving that Protocol A is not
with equality on the left-hand side of (23) if and only if theop)grﬁal for Scenario 3 P 9
random _variable§( ‘T’de are ir?dependent_, and with _equality The first upper bound ory comes from a rather straightfor-

on the right-hand side of (23) if and only if there exisand argument. According to Theorem 1, the secret-key rate is

y such thatPxy(z,y) = 0 although Px () - Pr(y) # 0. pogitive if1(X;Y) > I(X; Z). This condition is equivalent to

Furthermore,
i HX|Y)<HX|Z 26
dind(ny)§1—m. (XY) (X12) (26)
max Pxy
] ) . o where
This can be seen by taking the uniform distribution €%+
When X andY are distributed according to (20), then H(X|Y) = h()
o 1-2« HX|Z)=1—-rx)1—ry)+ (1 —rx)rvh(a).
Py =1 - 0 =12 (X12) = (1= r)(1 =) + (1 = rx)ryh(a)

Theorem 15 implies that secret-key agreement is impossibld-emma 16:In Scenario 35(X;Y||Z) is strictly positive if
under the surprisingly simple and intuitive condition that the

probability that Eve reliably knowX andY equals or exceeds ry < 1— W) )
dina(Pxy ). 1—ry +ryh(a)

(27)

Theorem 15:Let X andY be arbitrary random variables|f Lemma 16 does not apply, in some cases one can prove
with joint distribution Pxy-, and letZ be generated by sendingthat secret-key agreement is nevertheless possible by using
[X,Y] over an erasure channel with erasure probabllityr.  Protocol A. When the blocklength %/, the probabilityp;o
Thenr > dina(Pxy) implies I(X;Y | Z) = 0. that Bob accepts and receives the bit sent by Alice incorrectly,

Proof: Let » > dina(Pxy) = 1 - 1/F(Pxy), i.e., and that Eve receives this bit correctly, is upper-bounded by
F(Pxy) < 1/(1—r). Then, from the definition of'(Pxy), «¥. On the other hand, the probabilips; that Bob accepts
we conclude that there exists a distributiQi y-, correspond- and receives the correct bit, and that Eve guesses the bit
ing to an independent distribution & andY’, such that incorrectly, satisfies

(1—7)- Pxy(x,y) £ X-Qxvy(z,y) < Pxy(z,y) (24)

forallz e X, y €, and for somé) < X\ < 1. We define the
random variableZ, which can be obtained fro, as follows. The reason for this is that if Eve receives only erasure

.

1 r r :
Po1 2 5(1 — Oé)]\ (1 — 7’)()]\ (1 — 7’y)]\ .

If Z = A, thenZ = A. Because symbols, her error probability about the bit sent by Alice
is, independently of her strategy, equal 1f2. Finally, the
Pxyz(z,y,A) = (1 =7) - Pxy(z,y) probability p; that Bob accepts, and that both Bob and Eve

_ ) _  receive the bit incorrectly satisfies
and because of (24)7 can be defined to be equal

with some con(_jitional probability when givei = [z, y], and pu < a1 —rx)N.
7 = Z otherwise, such that

) <y Hence Bob’s error probability is of ordeP(a”), whereas

P A)=A- . 25
xvz(®,4, ) Qxv(w,y) @5 Eve's error probability is of order
This can be done for all pairgz,y), and (25) implies N N
Pyy|z=a = Qxy, ie, that X andY are independent QU =) —rx)(1 = ry))™ + (a1 —7x))").
when givenZ = A. Hence .
From this and from Lemma 10 we can conclude that Protocol
I(X;Y|2)<I(X;Y|2)= ZPZ(;) (XY | Z = %) A works if and only if
=Py;(A) - I(X;Y|Z=DA)=0 a<(l-a)(l-rx)1-ry) (28)

and the theorem is proved. O and the following lemma is proved.
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Lemma 17:In Scenario 3, Protocol A allows secret-key Theorem 18:Protocol B allows secret-key agreement in

agreement, and(X;Y||Z) is positive, if Scenario 3, and(X;Y||7) is positive, if
2(1— =) (1 —ry)
] 3 @ rx < o (30)
ry <1 —(1—a)(1—7’y)' (29) 5—Adry

(whenl— /(1 — @) < 5/4 — ry), or if

Note that this bound is strictly positive only if — ry > ) 1, 1o« 1 (31)
a/(1 — «). This is the same condition as in Theorem 14 of rx <{I-rv) 1—a 2 8
the previous section.
We remark that each of the expressions in (27) and (20yhenl — «/(1— «) > 5/4 — ry), respectively.
can be greater than the other./#f is constant andv — 0, Theorem 18 shows that in Scenario 3, Protocol B is strictly
the expression of (29) is greater, whereasyif= Oé/(]_ — a), better than Protocol A, which is therefore not optimal. It is
the expression of (29) equalls and the expression of (27) is€asy to see that the upper bounds of (30) and (31) are greater
greater tharD for all o < 1/2. than the bounds given by (27) and (29) in many cases. We
Intuitively, the repeat-code protocol (Protocol A) does ndtonsider two examples.
appear to be very appropriate in a situation where Eve hadf 7y is constant andv — 1/2, then the bound given in
perfect access to{ or Y with some positive probability, (27) tends tod much faster than (30) (which applies in this
because revealing one bit of a repeat code block medglation). The bound of (29) is even negative. On the other
revealing the entire block. It is therefore conceivable thathgnd, ife = 3/7, andry — 1, then (27) is smaller than (31)
protocol using blocks which contain a certain fraction (ledgvhich applies here). The bound (29) is negative again.
than half) of incorrect bits is better here, although the effect Note that the bounds (30) and (31) are not tight. In partic-
that Alice’s and Bob's bits become more reliable is weaké#lar, the bounds from an optimal analysis of Protocol B must
in such a protocol. The advantage is that if Eve reliabkje greater than the bound from Protocol A because Protocol
knows one bit (or a small number of bits) of a blockA is a special case of Protocol B. However, an exact analysis
she does not automatically know the whole block. We wifff Protocol B appears to be difficult.
show that in Scenario 3 the following protocol is superior to Finally, we give a pessimistic bound ety for Scenario 3.
Protocol A. As in the previous section, we derive a condition here for the
fact thatI(X;Y | Z) = 0 (see Theorem 19 at the bottom of
Protocol B. Bob randomly chooses a bt and a random his page). The proof of Theorem 19 is given in Appendix C.
N-bit block [C1, - - -, O] such thattN' of the bits are equal of course, the bound ony given in (32) at the bottom of the

to C, and (1 — #)N of the bits are equal t& := 1 — C' page is greater than the bounds (27), (29), and (30) (or (31),
_(Wheret > 1/2 is a parameter, andN is an integer). As respectively) for all possible choices afandry-.
in Protocol A, Bob compute$Cy & Yy, --,Cy & Y] and

sends this block over the public channel. Alice computes
[(CL @ Y1) @ X1, -, (Cy & Yy) @ Xn] and accepts only VI. CONCLUDING REMARKS
if this equals[0,0,---,0] or [1,1,---,1]. We have investigated the problem of generating a provably
The analysis of the protocol shows that it is advantageosscure key by public discussion from correlated information.
for Alice and Bob when Bob, and not Alice, is the sendeBteps have been taken towards characterizing under what
of the bit in Protocol B ifry > rx. Note that Protocol B conditions on this information such secret-key agreement is
corresponds to Protocol A for the choite= 1. Protocol B is, possible in principle. In particular, we have introduced a
as Protocol A, efficient in terms of computation but wastefulew information measure which turned out to provide such a
with respect to the achievable rate of generated secret key. &raracterization in many situations. However, it is not clear
efficiency improvement similar to the parity-check version olvhether this is true in general. For Scenario 3 discussed
Protocol A [12] exists also for Protocol B. above, the resulting (sufficient but not necessary) conditions
The analysis of this protocol in Scenario 3 is quite technicdbr I(X;Y | Z) = 0 and for the presented protocols for secret-
and is given in Appendix B, where Theorem 18 is proved. Key agreement to be successful are not exactly complementary.
gives an upper bound orx when givena andry. We only (This is true although both the optimistic and pessimistic
mention here the surprising fact thtanust typically be chosen bounds of Theorems 18 and 19 can be slightly improved by a
only slightly greater thari/2 (whereas it is obvious that thebetter but more complicated analysis.) We suggest as an open
choicet = 1/2 is completely useless). problem to derivanecessary and sufficieabnditions for either

Theorem 19:
In Scenario 3,I(X;Y |Z) = 0 if

. (1—=ry)1—2w)
T et 2(l-n (- aVi-2a-(1-2a)+(1-r)(1-20) (32)
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I(X;Y | Z)=0andS(X;Y||Z) > 0, and to decide whether Fact 2: The random variableZ, together with some specific
Conjecture 1) also holds in Scenario 3, and in general.  additional informationU/, corresponds to a random variable
Z obtained by sendind? through a symmetric binary erasure

APPENDIX A channel with positive erasure probability.
CONTINUOUS RANDOM VARIABLES FROM Theorem 6 and Theorem 7 show that Facts 1 and 2 together
INDEPENDENT BINARY -INPUT CHANNELS imply S(X;Y|Z) > 0.
Proof of Fact 1: Obviously 0 < Pr(0) < 1 holds. We

Here we show that the result of Theorem 7 also hol%%o
when the random variables that are generated fi@nare
not discrete. For example, this is the case if Eve receives her Probyx [fx | reo(®) # fx | re1(x)] > 0. (36)
information about® from a Gaussian channel.

Let X, Y, and Z be continuous random variables, an®therwise, if fx | r=o(z) = fx|r=1(z) With probability 1,
let fxyz, fx|v,--- be the probability density functions (wethen
assume that such functions exist). The differential entropy of

w that

X, the conditional differential entropy ok when givenY’, Ixv|z=- = fxv|r=0 - Pr|z=-(0)
and the mutual information between andY are defined as + fxy | r=1 " Pr|2=-(1)
follows (see, for example, [3]): = fx|reo fy| Reo - Pr| 2=:(0)
—/fX-longdx + fx|r=1 - fy|rR=1"Pr|2z=-(1)
= fx|r=0"(fy|R=0 - Pr|2=-(0)
R(X|Y)= /fXY log fx |y dx dy + fy|r=1 " Pr| z=-(1))
= leZ:Z 'fY|Z=Z
I06Y) = hX) = WX V) = [ Fy g e dy
Fx -ty with probability 1. Hence I(X;Y | Z = z) = 0 for all z,

The conditional information betweeX andY when given andI(X;Y |Z) = 0, which is a contradiction. Therefore (36)
Z can be defined in analogy to the case of discrete randdwlds. We define

variables as follows:
Ag =A{z| fx|r=o(x) > fx | r=1(2)}

(XY | 2)=h(X[2) - MX|YZ) and
fXY|Z .
fxyvz log——————dxdydz Ay = {z| fx|r=o(z) < fx|r=1(2)}.
Ixiz vz
_ /I(X;Y 17 = 2)- fo(2)de Then Ag and A; are disjoint measurable sets, with

, , Px | r=0(Ao0) > Px | r=1(A0) (37)
As in Section IV, we assume thaf, Y, and Z are generated d
by sending a binary random variablg over independent
channels, i.e., Pxr=o(A1) < Px|r=1(41)

Ixvzir=fx\r" fyir fz1r (33) (where Px | g=o(Ao) stands for [, fx|r=odz). Inequality

. (37) holds because Py | p=o(Ao) = Px | r=1(A0), then
or, equivalently, fx |ryvz = fx|r, fy|rxz = fv|r and

Tz1axy = fz17- /fX|R=0(37) — fx|r=1(z)dz =0
Theorem 20:Let R be a binary random variable, and A

let X, Y, and Z be (real-valued) random variables with

probability density functionfyy , and conditional density (and the same holds fot;, because th¢x | r—; are densities

fxy|z. Assume that (33) holds. Then secret-key agreemedftnormed probability measures). It is a well-known fact from

is possible, i.e.S(X;Y||Z) > 0, if I(X;Y|Z) > 0. measure theory that the integral of a strictly positive function
Proof: We assumel(X;Y | Z) > 0, and conclude the on a setwith nonvanishing measure is also strictly positive, and
following two statements: henceAq and A; would be null sets, which is a contradiction

Fact 1: We have0 < Px(0) < 1, and Alice and Bob can to (36). For the random variabl¥, two setsB, and B; can
generate binary random variablés and Y from X andY be defined similarly.

with positive probability such that In analogy to the case of discrete random variables (see
Section Ill), Alice and Bob can obtain new random variables
Pz r(0,0) > Pgr(1,0) (34) X andY” by restriction of the ranges of andY to Ay U A;
and and By U By, respectively, and send these random variafiles
Pg r(0,1) < Pg | g(1,1) (35) andY over two channels in order to generate binary random

variablesX andY such that¥ = 0 if X € A, and X =1 if
(as well as the corresponding inequalities when replading X € A; (and analogously fot"). It is obvious that (34) and
by Y) hold. (35) hold, as well as the corresponding inequalitiesfor
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Proof of Fact 2: From the other(t — s)N realizations ofY that also correspond to
correct bits in Bob’s block), and exactly the same number of
I(X;Y[2) = /I(X;Y | Z =2) fz(z)dz >0 incorrect bits, and that she learns nothing about Alice’s block

(i.e., about all the realizations df) because she receives only
we conclude that there is a measurable Bewith (D) > 0 erasure symbols from that channel. This is a lower bound on
(where . denotes the Lebesgue measure)fand ~vn because in this case, Eve’s error probability for guessing

- _ Bob’s bit is equal tol/2, and is independent of her strategy.
I(X;Y|Z=2>0, foralzeD. (38)  This holds for all possible, and hence the maximum of this
Because of (38) we have botfr| z—.(0) > 0 and fg| 7. probability, taken over ald < s < 1 —¢, gives also a lower
(1) > 0 for all z € D. (If, for example, | z=.(0) = 0, then bound

1 tN , ;
= _a-P _ (0 > A . \sN e Y(t—s)N
Ixv|z=: = fxvy|r=0 " Pr|2=:(0) W25 ogirglr(?(_t) { <SN>(7y) (1—-7y)
+ fxv|r=1 Pr|z=-(1)
(1-ON Y\, \an 1 — o Y(A—t=5)N
= fxy|r=1 = Ix|Rr=1"fy|R=1 ) sN (ry)" " (1=ry)
:fX|Z=z'fY|Z=z '(1_7)X)N- (40)

and I[(X;Y |Z = 2) = 0.) For everyn, let D, be the

i The next lemma gives a simpler lower bound that can be
(measurable) set of all in D such that

derived from the bound (40) by determining its asymptotic

IR 2==(0) > Pr(0)/n behavior.
and Lemma 21: The lower bound (40) implies that
fr12=:(1) 2 Pr(1)/n. (/N 1 1
| 712\5/1\ >1- 1K m —2Krx (41)
Then D = UD,,, and (D) > 0 implies v
if ryv/2 <1 -t holds, and ifN is sufficiently large.
0< D) = p(UDn) £ i(Dn). Proof: First note thaty /2 < 1—t means thak := ry /2
" is a possible choice (in fact, this is the optimal choice). From
We conclude that there existg such thatu(D,,) > 0. Stirling’s formula (see, for example, [8]) we can conclude that
Let / be a random variable such thét= R with proba- “ N
bility 1 if z ¢ D,,, and with probability alVy <C (e
: : bN ) = N \V(a—b)*?
fr| z=2(1) — Pr(i)/n0 . . - .
Fr) 7= (1) for some constant’. The binomial coefficients in (40) can be

replaced by the corresponding expressions, and a straightfor-
if z € D,, and R =4 (and such that otherwisé] gives no ward computation leads to the following asymptotic behavior
information about?). The random variableZ, together with of the lower bound onyy:
this side informationl/, corresponds to a random varialdfe K K
generated froniz by a symmetric binary erasure channel With,yi{&’/N > <1 _ L) . <1 + i)

erasure probability.(D,,,)/no > 0. O B 2K 2K
1 (1—ry ) K
APPENDIX B : <1 + 41— 7’Y)K>
ANALYSIS OF PROTOCOL B IN SCENARIO 3 1 (1—ry ) K
Let the protocol parametérbe fixed, and let ) <1 - m) S(L—rx)*®
K:K(t)::;. > 1_L . 1_; (1-2Krx)
4t — 2 - 4K 16(1 — ry)K
We first compute the conditional probabilityy that Alice s b 1 oK
receives the bit sent by Bob incorrectly, given that she accepts: - 4K 16(1 —ry)K X
P atN(1 — )0 for sufficiently largeN. O
N = ' — ' ' — '
(1 —a)tNall f)A +atN(1 - a)t=Hh The bound (41) in the above lemma holds for Allthat
o NG correspond to a protocol parametewhich satisfies-y /2 <
< 11—« : (39) 1+ This condition is equivalent to
Eve’s conditional error probabilityyy, given that Alice 1 <1—ry. (42)
accepts, is lower-bounded hly2 times the probability that 2K

Eve receives exactly/N of thetN correct bits of Bob’s block The idea of the proof of Theorem 30 is to find the best choice
(more precisely, that she receives the corresponding realifa- K (i.e., the best choice afin Protocol B) with respect to
tions of Y from the erasure channel, and erasure symbols fie fixed parameters andry-, and such that (42) holds. This
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optimal choice ofi{ leads to an upper bound er, such that error probability of her guess. Note that with an optimal
if rx is smaller than this bound, then Protocol B works foanalysis, Protocol B would clearly turn out to be at least as
secret-key agreement. This is exactly the upper bound statgebd as Protocol A irany situation, because Protocol A is
in the theorem. a special case of Protocol B and corresponds to the choice

Proof of Theorem 18:According to (39) and (41), Protocol.t = 1. Itis finally conceivable th‘?‘t the al_)ove _results can be
X ; improved when a block protocol is used in which both Alice
B (with parameter) works for secret-key agreement if

and Bob (and not only Bob) have a block that is not composed

KN S 1 1 —oKr by NV times the same bit. However, such a protocol appears
No= 4K 16(1 —ry)K X to be much more difficult to analyze.
o 2K /N
> —— > 0% 43
—a=/» (43) APPENDIX C
and if the condition (42) also holds. The reason is that (43) PROOF OF THEOREM 19

implies that Eve’s error probability about the bit sent by We show that if (32) is satisfied, then a channel, character-
Bob is asymptotically greater than Alice’s error probabilityzed by P’;| ,, can be constructed such thtX; Y | Z)=0.
for N — oo. Lemma 10 states that this is sufficient for th&he onlyz € Z with I{X;Y |Z = 2) > 0is 2 = [A, A], and
possibility of secret-key agreement by public discussion. Lete event”Z = [A, A] has probability(1 — rx)(1 — ry). The

§:=1-—«a/(1l — ). Then (43) is satisfied if idea of the proof is to split this into three everfs= A,
5 1 1 Z = Ny, and Z = Ay (Where_Z = A, can also occur if
7>X<ﬁ—w< m) (44) Z # [A,A]) such thatl(X;Y [Z = A;)=0fori=1,2,3.
v More precisely, the random variablé will be defined such

This bound depends off, and from (44) we can determinethat Z = A, is possible not only ifZ = [A, A], but also if
the optimal choice fork (and hence the optimal choice ofZ = [0,1] and Z = [1,0], whereasZ = A, is also possible
the protocol parametet). The only restriction is that theif Z = [0,A] and Z = [A,0], and, finally, Z = A; also
choice must be compatible with (42). It is easy to see thiitZ = [1,A] and Z = [A,1]. We determine the maximal

the expression on the right of (44) is maximal for possible probability ofZ = [A, A] which allows that this
1 /1 1 event can completely be split.
K=Ky :==>- <_ + —> We define the random variablé as follows, by giving the
6 \2 8(1-ry) joint distribution with Z:
. - - a1 (i oy
It is somewhat surprising that & is small andry = 1 (i.e., Pyy(AL[A A = - xTy

in a situation which is not advantageous to Alice and Bab) 1- 2«
must be large, and this means thais only slightly greater P;, (AL 0,1]) = Pz4(Aq,[1,0]) = - Pz([0,1])

than1/2 (whereas the choice= 1/2 is obviously the worst — 50 Py([1,0]) = - TXTy
possible choice). Choosinf = K, is compatible with (42) ’ 2
if 6> 5/4 —ry. Then the condition (44) is Pz7(Ag, [AA]) = Pzz(As,[A, A])
11—«
262(1—r =p-rx(l—ry)| ——— -1
L) o= =5 1)
- Y
. . . PZZ(A27[A70]) :PZZ(A27[07A])
If 6 > 5/4—ry, the condition (42) is not fuIﬁIIed_ foK = K. = Pyy(0s, [A1]) = Pyy(As,[1, 4]
For K = K|, := 1/(2 — 2ry) (the smallest choice foK that (1 —ry)
satisfies (42)) the right-hand side of (44) equals = - Pz([0,A]) = - %
(1—ry) <5 e ls 1) andZ = Z otherwise. The parametér< y < 1 is such that
2 8
3
This proves Theorem 18. O > Pza(A0 A A]) = Py([A, A)).
i=1

Note that the main objective of the above analysis . . .
. . o ote thaty > 1 is not possible. It is easy to see that the
Protocol B is to show that it leads to a strict improvement o . - ; .
handom variableZ can be obtained by sending over a

Protocol A, rather than to characterize the performance of t o " LD
rotocol completely. In particular, the bounds of Theorem 1j§annel specified by some conditional probability distribution
P ’ ' | z- We show thatl/(X;Y | Z = A;) = 0 fori = 1,2,3.

are not tight by two reasons. First, it is not necessary to choq._s% ; .
. . . . or¢ = 1 this follows from

t such thatry /2 is a possible choice fog, as done in the

proof of Lemma 21. Secondly, we have compared Alice’s error P,y - (0,0, A1) = Pyy 2(1,1,A1) = p

probability with Eve’s conditional error probability, given that 2(1 - 209

Alice’s bit is correct. Eve’s error probability, given thatice and

rxrya(l — a)

accepts is greater, because, given thdice does not receive Poonl01. A = Poun(1.0. Ay) = 5. 1XTYQ @
the correct bit it is more likely that Eve’s bit is also incorrect. v 201, A1) = Py z(1,0,40) = g 1—2a 2
However, it appears to be difficult to determine Eve’s optimal rxrya  rxrya(l —a)

strategy of guessing the bit, and hence to computeeitzet the 5 K 2(1 — 2a)
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Fori = 2 and: = 3 one can easily verify that
Pyyz(0,0,A;) - Pyyz(1,1,A:) o
:PXYZ(()?]-?AZ)PXYZ(]'?OvAl) 2]
holds, which implies thatX and Y are statistically inde-
pendent, given thaZ = A, If z & {A1, Ay, Az} then Bl
I(X;Y|Z = z) = 0 obviously holds, and we conclude 4
I(X;Y|Z)=0andI(X;Y | Z) = 0.

The maximal probabilityPz([A, A]) such that the event
Z = [A,A] can be completely split intd7 = A; as above
is the sum of the probabilitie®’; 5 (A;, [A, A]) (i = 1,2,3)
with z = 1. Thus the described construction Bfworks if

(5]

(6]
(7]

TXTY ™ l—«
XY (= ry) - [ —— e 1
T —oq T 2rxl=ry) <\/1—204 )

> Py([AA]) =1 —rx)1—7ry) (45) 8]

0 El

L . : . [10]
Remark: Note that the condition given in the lemma is
sufficient, but not necessary fd(X;Y | Z) = 0. If rx #
ry, a better bound can be achieved wh&n= [0, A] and
Z = [A,0] (as well asZ = [1,A] and Z = [A,1]) are
not transformed symmetrically t& = A, (Z = Ajz), but
each with the maximal possible probability, i.e (1 —

ry)/2 and (1 — rx)ry /2, respectively. The condition (19)

for I(X;Y | Z) = 0 can then be replaced by the better, bu[tls]

more complicated condition

and this is equivalent to (32).

(11]

[12]

rXTy Q¢ —7’X(1—7’y)—7’y(1—7’x)+ﬁ [14]

1 -2«

> (1—rx)(1—ry)
[15]
where
[16]
T:=r3(1—ry)? +75(1 —rx)?
2 4@2 " 1 " a 1 a.

2+ T rx(I—rx)ry(1—ry). [17]
[18]
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