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Unconditionally Secure Key Agreement
and the Intrinsic Conditional Information

Ueli M. Maurer, Senior Member, IEEE, and Stefan Wolf

Abstract—This paper is concerned with secret-key agreement
by public discussion. Assume that two parties Alice and Bob and
an adversary Eve have access to independent realizations of ran-
dom variablesX, Y , and Z, respectively, with joint distribution
PXY Z . The secret-key rateS(X;Y kZ) has been defined as the
maximal rate at which Alice and Bob can generate a secret key
by communication over an insecure, but authenticated channel
such that Eve’s information about this key is arbitrarily small.
We define a new conditional mutual information measure, the
intrinsic conditional mutual information between X and Y when
given Z, denoted by I(X;Y # Z), which is an upper bound on
S(X;Y kZ). The special scenarios are analyzed whereX, Y ,
and Z are generated by sending a binary random variableR,
for example a signal broadcast by a satellite, over independent
channels, or two scenarios in whichZ is generated by sending
X and Y over erasure channels. In the first two scenarios it
can be shown that the secret-key rate is strictly positive if and
only if I(X;Y # Z) is strictly positive. For the third scenario,
a new protocol is presented which allows secret-key agreement
even when all the previously known protocols fail.

Index Terms—Cryptography, one-time pad, perfect secrecy,
secret-key agreement.

I. INTRODUCTION

PERFECTLY secure key agreement has been studied re-
cently by several authors [19], [6], [13], [2], [9], [7], [16].

Two possible approaches are based on quantum cryptography
(e.g., see [2]) and on the exploitation of the noise in communi-
cation channels. In contrast to quantum cryptography, which
is expensive to realize, noise is a natural property of every
physical communication channel. In [13] and in [16] it has
been illustrated how such noise can be used for unconditionally
secure secret-key agreement and, furthermore, that it is ad-
vantageous to combine error-control coding and cryptographic
coding in a communication system. Noise in communication
channels has also been shown useful in other respects. In [5]
and [4], for instance, it was shown how to realize various
cryptographic primitives, such as bit commitment or oblivious
transfer, based on a noisy channel.

It is a classical cryptographic problem to transmit a message
from a sender (referred to as Alice) to a receiver (Bob) over
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an insecure communication channel such that an adversary
(Eve) with access to this channel is unable to obtain useful
information about . In the classical model of a cryptosystem
(or cipher) introduced by Shannon [17], Eve has perfect access
to the insecure channel; thus she is assumed to receive an
identical copy of the ciphertext received by the legitimate
receiver Bob, where is obtained by Alice as a function of
the plaintext message and a secret key shared by Alice
and Bob. Shannon defined a cipher system to be perfect if

, i.e., if the ciphertext gives no information about
the plaintext or, equivalently, if and are statistically
independent. When a perfect cipher is used to encipher a
message , an adversary can do no better than guess
without even looking at the ciphertext. Shannon proved the
pessimistic result that perfect secrecy can be achieved only
when the secret key is at least as long as the plaintext message
or, more precisely, when .

For this reason, perfect secrecy is often believed to be
impractical. In [13] this pessimism has been relativized by
pointing out that Shannon’s apparently innocent assumption
that, except for the secret key, the opponent has access to
precisely the same information as the legitimate receiver, is
very restrictive and that indeed in many practical scenarios,
especially if one considers the fact that every transmission of
data is ultimately based on the transmission of an analog signal
subject to noise, the adversary has some minimal uncertainty
about the signal received by the legitimate receivers.

Wyner [19] and subsequently Csiszár and K̈orner [6] con-
sidered a scenario in which the opponent Eve is assumed
to receive messages transmitted by the sender Alice over
a channel that is noisier than the legitimate receiver Bob’s
channel. The assumption that Eve’s channel is worse than the
main channel is unrealistic in general. It was shown in [13]
that this assumption is not needed if Alice and Bob can also
communicate over a completely insecure (but authenticated)
public channel.

For the case where Alice, Bob, and Eve have access to
repeated independent realizations of random variables, ,
and , respectively, with joint distribution , the rate
at which Alice and Bob can generate a secret key by public
discussion over an insecure channel is defined in [11] (as a
strengthened version of the definition given in [13]) as follows.
We assume in the following that the distribution is
publicly known.

Definition 1: The secret-key rate of and with respect
to , denoted by , is the maximum rate at which
Alice and Bob can agree on a secret keyin such a way
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that the amount of information that Eve obtains aboutis
arbitrarily small. In other words, it is the maximal such
that for every and for all sufficiently large there
exists a protocol, using public discussion over an insecure but
authenticated channel, such that Alice and Bob, who receive

and , respectively,
compute the same key with probability at least ,
satisfying

(1)

(2)

and1

(3)

Here, denotes the collection of messages sent over the
insecure channel by Alice and Bob, and stands for

.

Remark: Note that this definition corresponds to thestrong
secret-key rate as introduced in [11]. In contrast to all earlier
definitions of a rate made in the context of secret transmissions
(e.g., of the secrecy capacity in Wyner’s [19] and Csiszár
and Körner’s [6] models), not only therate at which Eve
obtains information about the secret key, but thetotal amount
of information she learns about this key, must be arbitrarily
small. However, it will be shown in a final version of [11] that
the secret-key rates with respect to the weaker and stronger
definitions are equal. Hence we can restrict ourselves to the
stronger, more satisfactory definition.

Remark: The problem of secret-key agreement has also
been studied for the case where the channel connecting Alice
and Bob is not authentic, i.e., the adversary is also able to
modify or insert messages. It has been shown in [10], [14],
and [18] that secret-key agreement can even be possible in this
case (if the distribution satisfies certain properties).

The following lower bound on is proved in [11]
(and first in [13] for the weaker definition), and follows from
a result by Csisźar and K̈orner [6].

Theorem 1: For all distributions we have

It has been first shown by an example in [13] that the secret-
key rate can be strictly positive even when both

and hold.
We give a brief outline of the rest of this paper. In Section II

we define a new conditional information measure and show
that this measure gives an improved upper bound on the
secret-key rate. In Section III we formulate some fundamental
properties of the secret-key rate. Sections IV and V address
the problem whether secret-key agreement is always possible
when this new upper bound is strictly positive. We consider
this for the cases where, , and are generated by sending
a binary random variable over independent channels (Scenario
1 in Section IV), and where is generated by sending and

1Throughout the paper, all logarithms are to the base2.

over erasure channels (Scenarios 2 and 3 in Section V).
For Scenarios 1 and 2 it is shown that secret-key agreement
is possible if the intrinsic conditional information is positive.
For a generalized version of Scenario 2, in which Eve obtains
both Alice’s and Bob’s information with a certain probability

, the new information measure is shown to be closely
related to and to a new, natural quantity measuring the
deviation of Alice’s and Bob’s information from statistically
independent information. For Scenario 3 finally, we show that
a new protocol is more powerful than the previously known
protocols.

II. THE INTRINSIC CONDITIONAL MUTUAL INFORMATION

A. Motivation and Definition

The following upper bound on the secret-key rate was
proved in [13]:

(4)

Trying to reduce the quantity in this bound, the
adversary Eve can send the random variableover a channel,
characterized by , in order to generate the random
variable . Obviously

(5)

holds for every such . A similar bound also appeared in [1].
Inequality (5) motivates the following definition of the intrinsic
conditional mutual information between and when given

, which is the infimum of , taken over all discrete
random variables that can be obtained by sendingover
a channel, characterized by .

Definition 2: For a distribution , the intrinsic condi-
tional mutual information between and when given ,
denoted by , is

where the infimum is taken over all possible conditional
distributions .

The intrinsic conditional information satisfies the following
inequalities:

and

where is generated by sending over an arbitrary channel.

Theorem 2: For arbitrary random variables , , and ,
we have

(6)
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Fig. 1. Two random variables.

Proof: Bound (6) follows from the definition of the
intrinsic information and from inequality (5).

Theorem 2 implies in particular that secret-key agreement
can be possible only if . The following simple
example shows that the intrinsic conditional information can
be equal to , and secret-key agreement is hence impossible,
even when both and hold.
Thus the bound (6) is a strict improvement of bound (4). Let

and

Then and (note that
if ), but . To see

this, consider the random variable, generated by sending
over the channel characterized by

and

Intuitively, giving the side information ‘‘destroys’’ all the
information between and , but generates new conditional
mutual information (that cannot be used to generate a secret
key). In contrast to , the intrinsic information

measures only theremainingconditional mutual
information between and (possibly reduced by giving ),
but not the additional information between and brought
in by .

B. A Graphical Representation

Let and be random variables. Then the quantities
, , , , , and

can be graphically represented (see Fig. 1). Note that the union
of all inner regions corresponds to .

The case ofthree random variables , , and is more
complicated. Assume first that . Let

(one can easily verify that is symmetric in its three
arguments). It is obvious that a simple graphical representation
is possible (see Fig. 2).

Fig. 2. Three random variables.

Fig. 3. Visualization ofI(X;Y #Z).

Note that if , such a representation is
also possible, but one of the regions is negative. For example,
when and are independent symmetric bits, and

, then , but
For a systematic treatment of such representations, see [20].

We are now interested in a representation of .
When given arbitrary , , and (i.e., even when

), we consider all the random variablesthat
can be generated by sendingover a channel . Note
that and hold for
such random variables . The particular which minimizes

fulfills . (This means that
there are no negative regions in the graphical representation,
although this may be the case for, , and .) The quantity

can be directly associated with one of the regions
(see Fig. 3). The random variableis the one that maximally
reduces the size of this region.

III. SECRET-KEY AGREEMENT WITH

GENERAL RANDOM VARIABLES

As stated above, the intrinsic conditional mutual information
defined above gives a new upper bound on the

secret-key rate, and in particular, secret-key agreement is
impossible unless . It appears plausible that
this condition is also sufficient for a positive secret-key rate.

Conjecture 1: Let be such that .
Then .

An even stronger conjecture would be that
holds for every distribution . In the follow-

ing sections we prove the validity of Conjecture 1 for several
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special scenarios. It is a fundamental open problem to prove
or disprove the conjecture for the general case.

As a preparation for the analysis in the following sections
we prove some important and basic properties of the secret-
key rate. The three lemmas below are very intuitive and follow
quite directly from the definition of the secret-key rate. Lemma
3 states that Alice and Bob cannot increase the secret-key rate
by ignoring certain realizations of the random variablesand

. We say that Alice and Bob obtain new random variables by
restriction of the rangesif they discard realizations that do not
lie in certain subsets and of and . Lemma 4 states
that processing and cannot increase the secret-key rate.

Lemma 3: Let , , and be random variables with
ranges , , and and joint distribution . For
and , we define a new random experiment with random
variables and (with ranges and , respectively). If

is the event that and , and if is its
probability, then the joint distribution of and with is
defined as follows:

for all . (This is a probability distribution
for .) Then

(7)

In other words, the secret-key rate cannot be increased by
restricting the ranges of and .

Proof: The secret-key rate is the maximum
key-generation rate, taken over all possible protocols between
Alice and Bob. One possible strategy is to restrict the ranges of
their random variables. With probability , they both re-
ceive random variables and , respectively, and inequality
(7) follows.

Lemma 4: Let , , , , and be random variables
with distribution

where and are arbitrary conditional probability
distributions. Then

Proof: As in the proof of Lemma 3, the statement follows
because it is one of the possible strategies for Alice and Bob
to send and over two channels, and because the secret-
key rate is the maximum key-generation rate taken over all
possible protocols.

Lemma 5 states that if Eve has access to a random variable
(in addition to ) that can be interpreted as side information

provided by an oracle, then the secret-key rate is not greater
than in the original situation.

Lemma 5: Let , , , and be arbitrary random vari-
ables. Then

Fig. 4. Scenario 1.

Proof: Obviously, only condition (1) in the definition of
the secret-key rate is affected. Because
implies , the lemma follows.

Theorem 6 is an immediate consequence of Lemmas 3, 4,
and 5.

Definition 3: We say that and are generated from
and with positive probabilityif one can obtain from and

random variables and by restriction of the ranges (see
above), and the random variablesand by sending and

over two channels, specified by and .

Theorem 6: Let , , , and be arbitrary random
variables, and let and be generated from and
with positive probability. Then implies

.

IV. NOISY VERSIONS OF ABINARY SIGNAL

The first special scenario, which we analyze completely in
this section, is defined as follows.

Scenario 1.Let be an arbitrary binary random variable,
and let , , and be arbitrary discrete random variables,
generated by sending over independent channels , ,
and (see Fig. 4), i.e.,

(8)

In other words, , , and are statistically independent
when given . The following is a different but equivalent
characterization of Scenario 1. There exist and
probability distributions and

such that

i.e., is a weighted sum of two different distributions
over the set that both correspond to independent
random variables with ranges, , and . The results of this
section hold for all distributions with this property.

The main result of this section is the following theorem
characterizing completely the cases for which
in Scenario 1, i.e., for which secret-key agreement is possible
in principle, and implying that Conjecture 1 is true in this case.

Theorem 7: In Scenario 1, the following conditions are
equivalent.

A)
B)
C) .
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The proof that A) implies B) is subdivided into several steps
stated below as lemmas. We begin with the special case where

is a symmetric binary random variable and all three channels
are binary-symmetric. This special result is not necessary for
the proof of Theorem 7, but we show it in order to present
the protocol and some estimates that will be useful later.
In Appendix A we prove a result similar to Theorem 7 for
continuousrandom variables , , and generated from
independent binary-input channels.

A. Binary-Symmetric Channels

Let us first consider the following special case of Sce-
nario 1. Let and consider three
binary-symmetric channels , , and with bit-error
probabilities , , and , respectively, i.e., we have

and

where , , and . We can
assume here that , i.e., that Alice’s and Bob’s channels
are identical. If, for example, , Alice can cascade
her channel with another binary-symmetric channel with error
probability to obtain error probability .
(In this particular case of binary-symmetric channels it is not
even necessary to assume . The statement of Lemma
8 also holds if when the party with the greater error
probability is the sender and the other party is the receiver in
Protocol A described below.)

Scenario 1.1.The distribution is defined by the fact
that all the random variables are binary and symmetric, and by

and

where and .

In Scenario 1.1, Alice can send a randomly chosen bitto
Bob by the following protocol, which was already described
in [13].

Protocol A. Let be fixed. Alice sends

over the public channel. Bob computes

and accepts exactly if this is equal to either or
. In other words, Alice and Bob make use of

a repeat code of length with the only two codewords
and .

It is obvious that Eve’s optimal strategy for guessingis
to compute the block

and guess as if at least half of the bits in this block
are , and as otherwise. Note that although it is not the
adversary’s ultimate goal to guess the bitssent by Alice,

Lemma 10 below leads, from Eve’s error probability when
guessing these bits, to a lower bound on the secret-key rate.

Protocol A is computationally efficient, but it is not efficient
in terms of the size of the generated secret key. There exist
variants of the protocol, using parity checks instead of repeat
codes, that are much more efficient in terms of the achievable
key-generation rate [12].

We show first that for all possible choices ofand , in
particular, even if Eve’s channel is superior to both Alice’s
and Bob’s channel, Bob’s error probability about the bit
sent by Alice decreases, for , asymptotically faster
than Eve’s error probability when she uses the optimal
strategy for guessing this bit. (Note that is an average
error probability, and that for a particular realization, Eve’s
error probability will typically be smaller or greater than .)

Lemma 8: If Protocol A is used in Scenario 1.1, there exist
real-valued positive constantsand with such that

and for sufficiently large .
For the proof of Lemma 8, we need the following fact on

binomial coefficients.

Lemma 9: For sufficiently large even , we have

Proof: Stirling’s formula (see, for example, [8]) states
that

and thus we have for sufficiently large even

and this concludes the proof.

Proof of Lemma 8:Let be the probabil-
ity that the single bit sent by Alice is received by Bob as

and by Eve as . Then

Let be the probability that Bob accepts the message sent
by Alice. If we assume (without loss of generality) that is
even, then

(9)

(10)

The last expression is half of the probability that Bob receives
the correct codeword, and that Eve receives the same number
of ’s and ’s, given that Bob accepts. Note that (10) gives a
lower bound on Eve’s average error probability when guessing

for all possible strategies because in this symmetric case,
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Eve obtains no information about the bit, and half of the
guesses will be incorrect. From Lemma 9 we conclude that

for some constant , and for sufficiently large . For
we have

(11)

For equality holds in (11), and for the greater
factor of the product under the square root is decreased by the
same value by which the smaller factor is increased. Hence
the square root of this product is greater than . (For

the factors are equal, and the left-hand side of (11)
is maximal, as expected.) Because

(12)

we conclude that and for sufficiently
large ,

and

(where can be made arbitrarily small for sufficiently large
). From the above, we conclude that holds for

sufficiently small .

The fact that Eve has a greater error probability than Bob
when guessing does not automatically imply that Eve has a
greater uncertainty about this bit in terms of Shannon entropy,
and hence that . The next lemma, together
with Lemma 8, nevertheless implies that the secret-key rate is
positive in Scenario 1.1.

Lemma 10: Let , , and be arbitrary random variables,
and let be a bit, randomly chosen by Alice. Assume that
for all , Alice can generate a message from (where

) and (and possibly some random bits)
such that with some probability , Bob (who knows

and ) publicly accepts and can compute a bit such
that for some . If in addition, given
that Bob accepts, for every strategy for guessingwhen given

and the average error probability is at least for
some and for sufficiently large , then .

Proof: According to Theorem 1 is suffices to show that
Alice and Bob can, for some , construct random variables

and from and by exchanging messages over an
insecure, but authenticated channel, such that

(13)

with , where is the collection of all messages
sent over the public channel.

Let and be defined as follows. If Bob accepts, let
and , and if Bob (publicly) rejects, let
“reject.” We show that (13) holds for sufficiently

large . If Bob accepts then

for sufficiently large , where

is the binary entropy function, the first inequality follows from
Jensen’s inequality, and the reason for the second inequality
is that

for . Moreover,

where is the probability of guessing incorrectly with
the optimal strategy given that . Note that ,
hence , for all . Given that Bob publicly
rejects, we have

From we conclude that .

B. General Binary-Input Channels and the Proof of Theorem 7

First we show that the above results hold even when Eve
knows preciselywith a certain probability smaller than.
This is the case if is generated from by a binaryerasure
channel instead of a binary-symmetric channel, i.e., ifis
either equal to a special erasure symbol, or else .

Scenario 1.2.Let , , and be as in Scenario 1.1, but let
be generated from by a (possibly asymmetric) binary era-

sure channel (with erasure symbol) , independent of the
pair , and with transition probabilities

, , and
.

Lemma 11: If Protocol A is used in Scenario 1.2, there
exist real-valued positive constantsand with such
that and for sufficiently large .

Proof: We show first that we can assume without loss
of generality that is symmetric. Let , and let an
oracle be given that tells Eve the correct bitwith probability

if and . According to Lemma 5,
the additional information provided by this oracle cannot
increase the secret-key rate. The random variable, together
with the oracle, is equivalent to a random variable generated
from by a symmetric binary erasure channel with erasure
probability , and which is independent of the pair .

If , the lemma is trivial. Let , and let
. For sufficiently large , the probability that the
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number of bits (out of bits) known to Eve is even and lies
between and is at least . We can
assume without loss of generality thatand are
even integers. (Otherwise,can be chosen slightly smaller in
order to fulfill this.) We give a lower bound on Eve’s average
error probability about the bit sent by Alice, given that
Bob accepts. As in the proof of Lemma 8, we obtain a lower
bound on Eve’s error probability by taking a (small) part
of all positive terms adding up to . We have

for sufficiently large . Here we have made use of Lemma
9. The first expression is times a lower bound on the
probability that Bob receives the correct codeword, that Eve
knows an even number of bits which lies between
and , and that she receives the same number of’s
and ’s in her reliable bits, given that Bob accepts. In this case,
Eve obtains no information about the bit sent by Alice. The
expressions and are
the probabilities that and , respectively, given
that . Bob’s error probability, given that he accepts,
is . For sufficiently small (positive)

we have

because and . The lemma is
proved because of inequality (12).

We now consider the general Scenario 1. The following
lemma states equivalent characterizations of the condition

.

Lemma 12: In Scenario 1, the following three conditions
are equivalent.

i) .
ii) , , and .
iii) There exist such that

and

(14)

there exist , such that

and

(15)

and there exists such that

and (16)

Proof: First we give an alternative characterization of
the independence of the three channels, i.e., of

. (We sometimes omit all the arguments
of the probability distribution functions. In this case, the
statements hold for all possible choices of arguments. For
example, stands for for
all and .) From

and

we conclude that and, analogously, that
and .

i) implies ii). Let . Assume .
Then , and is also independent of

(and hence of ). Thus

which is a contradiction. We conclude that and
by a symmetric argument that . Finally, assume

. Then

which is a contradiction. Hence .
ii) implies iii). Let , that is, and are

not statistically independent, which implies that there exists
such that , i.e., such that one of the
inequalities of (14) holds. Because

there must as well exist an element ofsatisfying the other
inequality of (14). Similarly we conclude the existence of
appropriate and from . Finally,

for all with would imply that
. Hence (16) holds for some .

iii) implies i). Let , , , , and be as in iii). It suffices
to prove that because . This is
equivalent to the statement that and are not statistically
independent, given . We show that

(17)
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Fig. 5. The random variables in the proof of Theorem 7.

For both and we have

Because , in order to prove (17),
we have to show

(18)

and because of , inequality
(18) is equivalent to

which follows from

(19)

Both inequalities in (19) follow from the fact that
, and because of (15).

We are now ready to prove Theorem 7.

Proof of Theorem 7:Clearly, B) implies C) by Theorem 2,
and C) implies A) by the definition of the intrinsic information.
We show that A) implies B). Given that , we
construct, from , , , and , random variables , , ,
and with the following properties (see also Fig. 5).

1) and are generated from and , respectively,
with positive probability.

2) is binary and symmetric, and and can be
interpreted as being generated by sendingover two
independent binary-symmetric channels with identical
error probability .

3) contains exactly the same information about
as a random variable generated by sendingover

a binary erasure channel (which is independent of the
channels from (3)) with positive erasure probabilities

and .

For such random variables , , and , we have by
Lemma 11 that , and with Theorem 6
we conclude that . Hence it remains to show
that suitable random variables, , , and exist.

According to Lemma 12, there exist and
such that (14) and (15) hold. Let and be obtained from
and as follows. First, the ranges of and are restricted
to and , respectively, and secondly, the resulting
random variables and (which correspond to a new
random experiment) are made symmetric. This is done by
sending over the following channel to obtain (we assume

without loss of generality):

In an analogous way, and are obtained from and ,
respectively.

According to Lemma 12 there exists such that
and . Let the random variable

be defined as follows. If , let , and if ,
let . Intuitively, the information can be thought as
being provided by an oracle that tells Eve the correctif

. Such an oracle can only decrease Eve’s average error
probability and, according to Lemma 5, the secret-key rate.

It remains to show that , , , and have all the stated
properties. The Properties 1) and 3) are satisfied by definition
of the random variables. It remains to prove Property 2). First,
it is clear that , , and are binary and symmetric. For the
rest, we consider the case and .
The other cases are analogous. We have to show

which is sufficient because and are symmetric binary
random variables.

because and .
An analogous result can be proved for. As in the proof of
Lemma 8, the error probabilities of the two channels can be
made identical, and we have proved Property 2). The theorem
now follows from Lemma 11, Theorem 6, and Lemma 10.
Note that in this application of Lemma 10 the event that Bob
accepts means that Alice and Bob both accept a sufficiently
large number of consecutive realizations of and (if
Alice does not accept, she sends “reject” over the public
channel), and that Bob accepts the received message sent by
Alice. (Of course, this would be a very wasteful and inefficient
way of generating a secret key in practice. For example, it is



MAURER AND WOLF: UNCONDITIONALLY SECURE KEY AGREEMENT AND THE INTRINSIC CONDITIONAL INFORMATION 507

not necessary that the realizations of and accepted by
Alice and Bob are consecutive.) This concludes the proof.

Remark: The condition that is a binary random variable
is crucial in Theorem 7. To see this, consider the following
example: Let be uniformly distributed over the set

, and let , , and be binary random
variables, generated from by the following independent
channels (let be the Kronecker symbol, i.e., if ,
and otherwise ):

Note that for all , , that is, .
On the other hand, , and hence .

In fact, any distribution can be seen as generated by
sending a random variable over three independent channels
for some with . Such a random variable

can be defined as follows. Let

and

V. TOWARDS THE GENERAL CASE:
PROTOCOL A IS NOT OPTIMAL

In this section we assume that and are completely
general random variables, and that Eve obtains her information
from a random variable that is generated by sendingand

over erasure channels. The advantage of considering such a
scenario is that it is less difficult to analyze than the completely
general situation. Additionally, more general situations can be
reduced, by the methods of Theorem 6, to such a scenario
(with respect to the question whether secret-key agreement is
possible).

We approach the general situation by studying two extremal
cases. For Scenario 2 below, the statement of Conjecture 1 is
shown to be true, whereas for Scenario 3, this problem remains
open. Also for Scenario 3, we prove that Protocol A is not
optimal. A new protocol is shown to be strictly stronger with
respect to the possibility in principle of secret-key agreement.

Scenario 2.The random variables and are binary and
distributed according to

(20)

for some . The random variable is generated by
sending over an erasure channel with positive erasure
probability .

Scenario 3.The random variables and are distributed
according to (20), and , where and are
generated by sending and over two independent erasure

(a)

(b)

Fig. 6. Scenarios 2 and 3. The boxes stand for binary-symmetric and for
erasure channels, respectively. (Note that the erasure channel in Scenario 2
is not binary.)

channels with positive erasure probabilities and ,
respectively.

The two scenarios are illustrated in Fig. 6.
Prior to the analysis of Scenarios 2 and 3 we show that under

a condition which appears to be satisfied most likely if, ,
and are general random variables with ,
there exist random variables and , which can be generated
from and with positive probability, and side information

such that , , and correspond to one of the
Scenarios 2 or 3. Theorem 6 then implies that
if . The proof of the following lemma is
related to one of the arguments in the proof of Theorem 7.

Lemma 13: Let . Then Alice and Bob can
generate symmetric binary random variablesand from

and with positive probability such that and have a
symmetric joint distribution as given in (20) for some .

Proof: Because and are not statistically independent
there exist and satisfying

(21)

and

(22)

Alice and Bob can generate random variablesand by
restricting the ranges of and to and ,
respectively. Then is sent over the following channel (we
can assume without loss of generality that ):
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It is obvious that . The symmetrically
distributed random variable can be obtained from in an
analogous way. Then and are distributed according to
(20) with

if , and

if . In both cases we have because of
(21) and of (22).

If, for and obtained as in Lemma 13, there exists
such that the conditional probabilities

are positive for all , then there exists side
information such that equals with some probability
(that depends on ), but where contains no information
about or otherwise, i.e., the pair can be interpreted
as being generated by sending over an erasure channel
with positive erasure probability.

We conclude that very general situations can be reduced to
Scenario 2, in which is obtained by sending over an
erasure channel. In an analogous way, general distributions can
be reduced to Scenario 3. However, it appears to be difficult to
decide in general which reduction leads to the strongest results.

A. Analysis of Scenario 2

Scenario 2 has been defined above as the symmetric situ-
ation where and are distributed according to (20) with

, and where is obtained by sending over
an erasure channel with erasure probability . We derive
a condition for when Protocol A (with parameter ) al-
lows secret-key agreement. Bob’s conditional error probability
when guessing the bit sent by Alice, given that he accepts, is

where is the probability that Bob
accepts the received block. Given that Bob accepts, Eve (using
the optimal strategy) guesses the bit sent by Alice correctly
unless she receives times the erasure symbol. In the latter
case her error probability is , independently of her strategy.
Hence Eve’s error probability, given that Bob accepts, is

Using Lemma 10, we conclude that Protocol A works and
allows the generation of a secret key if

Theorem 14 shows that Protocol A is optimal in Scenario 2 in
the sense that ifsomeprotocol allows secret-key agreement in
principle, then Protocol A also does. Another consequence of
Theorem 14 is that Conjecture 1) is true in Scenario 2.

Theorem 14: In Scenario 2, the following four conditions
are equivalent:

i) ,
ii) ,
iii) Protocol A allows secret-key agreement,
iv) .

Proof: It remains to show that i) implies ii), i.e., that
holds whenever . Let

the random variable be generated from by the following
channel: if , , or , then .
When or , then is defined to be equal
to with probability

and equal to otherwise.
We show that . It is obvious that

Because of

and

and also are independent when given , i.e.,
.

B. Erasure Probability, Deviation from
Independence, and Intrinsic Information

In this section we show that a property of the intrinsic
information which is similar to the implication from i) to ii) in
Theorem 14 can be proved also in the case of general random
variables and . Namely, we show that if
Eve knows and precisely with some positive probability,
and if the joint distribution of and is “too close” to an
“independent distribution.” We have to define an appropriate
measure for the “deviation from independence” of the joint
distribution of the two random variables and .

Definition 4: Let and be random variables with ranges
and , respectively, and joint distribution . Let

where the minimum is taken over all probability distributions
for which and are statistically independent, and
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where we set and for . Thedeviation
of from independenceis defined as

where we set .
For every we have

(23)

with equality on the left-hand side of (23) if and only if the
random variables and are independent, and with equality
on the right-hand side of (23) if and only if there existand

such that although .
Furthermore,

This can be seen by taking the uniform distribution for .
When and are distributed according to (20), then

Theorem 15 implies that secret-key agreement is impossible
under the surprisingly simple and intuitive condition that the
probability that Eve reliably knows and equals or exceeds

.

Theorem 15:Let and be arbitrary random variables
with joint distribution , and let be generated by sending

over an erasure channel with erasure probability .
Then implies .

Proof: Let , i.e.,
. Then, from the definition of ,

we conclude that there exists a distribution , correspond-
ing to an independent distribution of and , such that

(24)

for all , , and for some . We define the
random variable , which can be obtained from, as follows.
If , then . Because

and because of (24), can be defined to be equal to
with some conditional probability when given , and

otherwise, such that

(25)

This can be done for all pairs , and (25) implies
, i.e., that and are independent

when given . Hence

and the theorem is proved.

C. Analysis of Scenario 3

In this section we analyze Scenario 3. Letbe the probabil-
ity that , and let and be the probabilities that Eve
doesnot receive the erasure symbol from her (independent)
channels. We assume here that . For fixed and

, we prove three different upper bounds on with the
property that secret-key agreement is possible ifis smaller
than at least one of these bounds. Moreover, a new protocol is
presented that is applicable for a larger class of distributions

than Protocol A, hence proving that Protocol A is not
optimal for Scenario 3.

The first upper bound on comes from a rather straightfor-
ward argument. According to Theorem 1, the secret-key rate is
positive if . This condition is equivalent to

(26)

where

Lemma 16: In Scenario 3, is strictly positive if

(27)

If Lemma 16 does not apply, in some cases one can prove
that secret-key agreement is nevertheless possible by using
Protocol A. When the blocklength is , the probability
that Bob accepts and receives the bit sent by Alice incorrectly,
and that Eve receives this bit correctly, is upper-bounded by

. On the other hand, the probability that Bob accepts
and receives the correct bit, and that Eve guesses the bit
incorrectly, satisfies

The reason for this is that if Eve receives only erasure
symbols, her error probability about the bit sent by Alice
is, independently of her strategy, equal to . Finally, the
probability that Bob accepts, and that both Bob and Eve
receive the bit incorrectly satisfies

Hence Bob’s error probability is of order , whereas
Eve’s error probability is of order

From this and from Lemma 10 we can conclude that Protocol
A works if and only if

(28)

and the following lemma is proved.
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Lemma 17: In Scenario 3, Protocol A allows secret-key
agreement, and is positive, if

(29)

Note that this bound is strictly positive only if
. This is the same condition as in Theorem 14 of

the previous section.
We remark that each of the expressions in (27) and (29)

can be greater than the other. If is constant and ,
the expression of (29) is greater, whereas if ,
the expression of (29) equals, and the expression of (27) is
greater than for all .

Intuitively, the repeat-code protocol (Protocol A) does not
appear to be very appropriate in a situation where Eve has
perfect access to or with some positive probability,
because revealing one bit of a repeat code block means
revealing the entire block. It is therefore conceivable that a
protocol using blocks which contain a certain fraction (less
than half) of incorrect bits is better here, although the effect
that Alice’s and Bob’s bits become more reliable is weaker
in such a protocol. The advantage is that if Eve reliably
knows one bit (or a small number of bits) of a block,
she does not automatically know the whole block. We will
show that in Scenario 3 the following protocol is superior to
Protocol A.

Protocol B. Bob randomly chooses a bit and a random
-bit block such that of the bits are equal

to , and of the bits are equal to
(where is a parameter, and is an integer). As
in Protocol A, Bob computes and
sends this block over the public channel. Alice computes

and accepts only
if this equals or .

The analysis of the protocol shows that it is advantageous
for Alice and Bob when Bob, and not Alice, is the sender
of the bit in Protocol B if . Note that Protocol B
corresponds to Protocol A for the choice . Protocol B is,
as Protocol A, efficient in terms of computation but wasteful
with respect to the achievable rate of generated secret key. An
efficiency improvement similar to the parity-check version of
Protocol A [12] exists also for Protocol B.

The analysis of this protocol in Scenario 3 is quite technical,
and is given in Appendix B, where Theorem 18 is proved. It
gives an upper bound on when given and . We only
mention here the surprising fact thatmust typically be chosen
only slightly greater than (whereas it is obvious that the
choice is completely useless).

Theorem 18:Protocol B allows secret-key agreement in
Scenario 3, and is positive, if

(30)

(when ), or if

(31)

(when ), respectively.
Theorem 18 shows that in Scenario 3, Protocol B is strictly

better than Protocol A, which is therefore not optimal. It is
easy to see that the upper bounds of (30) and (31) are greater
than the bounds given by (27) and (29) in many cases. We
consider two examples.

If is constant and , then the bound given in
(27) tends to much faster than (30) (which applies in this
situation). The bound of (29) is even negative. On the other
hand, if , and , then (27) is smaller than (31)
(which applies here). The bound (29) is negative again.

Note that the bounds (30) and (31) are not tight. In partic-
ular, the bounds from an optimal analysis of Protocol B must
be greater than the bound from Protocol A because Protocol
A is a special case of Protocol B. However, an exact analysis
of Protocol B appears to be difficult.

Finally, we give a pessimistic bound on for Scenario 3.
As in the previous section, we derive a condition here for the
fact that (see Theorem 19 at the bottom of
this page). The proof of Theorem 19 is given in Appendix C.
Of course, the bound on given in (32) at the bottom of the
page is greater than the bounds (27), (29), and (30) (or (31),
respectively) for all possible choices ofand .

VI. CONCLUDING REMARKS

We have investigated the problem of generating a provably
secure key by public discussion from correlated information.
Steps have been taken towards characterizing under what
conditions on this information such secret-key agreement is
possible in principle. In particular, we have introduced a
new information measure which turned out to provide such a
characterization in many situations. However, it is not clear
whether this is true in general. For Scenario 3 discussed
above, the resulting (sufficient but not necessary) conditions
for and for the presented protocols for secret-
key agreement to be successful are not exactly complementary.
(This is true although both the optimistic and pessimistic
bounds of Theorems 18 and 19 can be slightly improved by a
better but more complicated analysis.) We suggest as an open
problem to derivenecessary and sufficientconditions for either

Theorem 19:
In Scenario 3, if

(32)
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and , and to decide whether
Conjecture 1) also holds in Scenario 3, and in general.

APPENDIX A
CONTINUOUS RANDOM VARIABLES FROM

INDEPENDENT BINARY-INPUT CHANNELS

Here we show that the result of Theorem 7 also holds
when the random variables that are generated fromare
not discrete. For example, this is the case if Eve receives her
information about from a Gaussian channel.

Let , , and be continuous random variables, and
let , be the probability density functions (we
assume that such functions exist). The differential entropy of

, the conditional differential entropy of when given ,
and the mutual information between and are defined as
follows (see, for example, [3]):

The conditional information between and when given
can be defined in analogy to the case of discrete random

variables as follows:

As in Section IV, we assume that, , and are generated
by sending a binary random variable over independent
channels, i.e.,

(33)

or, equivalently, , and
.

Theorem 20:Let be a binary random variable, and
let , , and be (real-valued) random variables with
probability density function and conditional density

. Assume that (33) holds. Then secret-key agreement
is possible, i.e., , if .

Proof: We assume , and conclude the
following two statements:
Fact 1: We have , and Alice and Bob can
generate binary random variables and from and
with positive probability such that

(34)

and

(35)

(as well as the corresponding inequalities when replacing
by ) hold.

Fact 2: The random variable , together with some specific
additional information , corresponds to a random variable

obtained by sending through a symmetric binary erasure
channel with positive erasure probability.

Theorem 6 and Theorem 7 show that Facts 1 and 2 together
imply .

Proof of Fact 1: Obviously holds. We
show that

(36)

Otherwise, if with probability ,
then

with probability . Hence for all ,
and , which is a contradiction. Therefore (36)
holds. We define

and

Then and are disjoint measurable sets, with

(37)

and

(where stands for ). Inequality
(37) holds because if , then

(and the same holds for , because the are densities
of normed probability measures). It is a well-known fact from
measure theory that the integral of a strictly positive function
on a set with nonvanishing measure is also strictly positive, and
hence and would be null sets, which is a contradiction
to (36). For the random variable, two sets and can
be defined similarly.

In analogy to the case of discrete random variables (see
Section III), Alice and Bob can obtain new random variables

and by restriction of the ranges of and to
and , respectively, and send these random variables
and over two channels in order to generate binary random
variables and such that if and if

(and analogously for ). It is obvious that (34) and
(35) hold, as well as the corresponding inequalities for.
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Proof of Fact 2: From

we conclude that there is a measurable setwith
(where denotes the Lebesgue measure of) and

for all (38)

Because of (38) we have both and
for all . (If, for example, , then

and .) For every , let be the
(measurable) set of all in such that

and

Then , and implies

We conclude that there exists such that .
Let be a random variable such that with proba-

bility if , and with probability

if and (and such that otherwise, gives no
information about ). The random variable , together with
this side information , corresponds to a random variable,
generated from by a symmetric binary erasure channel with
erasure probability .

APPENDIX B
ANALYSIS OF PROTOCOL B IN SCENARIO 3

Let the protocol parameterbe fixed, and let

We first compute the conditional probability that Alice
receives the bit sent by Bob incorrectly, given that she accepts:

(39)

Eve’s conditional error probability , given that Alice
accepts, is lower-bounded by times the probability that
Eve receives exactly of the correct bits of Bob’s block
(more precisely, that she receives the corresponding realiza-
tions of from the erasure channel, and erasure symbols for

the other realizations of that also correspond to
correct bits in Bob’s block), and exactly the same number of
incorrect bits, and that she learns nothing about Alice’s block
(i.e., about all the realizations of ) because she receives only
erasure symbols from that channel. This is a lower bound on

because in this case, Eve’s error probability for guessing
Bob’s bit is equal to , and is independent of her strategy.
This holds for all possible, and hence the maximum of this
probability, taken over all , gives also a lower
bound

(40)

The next lemma gives a simpler lower bound that can be
derived from the bound (40) by determining its asymptotic
behavior.

Lemma 21: The lower bound (40) implies that

(41)

if holds, and if is sufficiently large.
Proof: First note that means that

is a possible choice (in fact, this is the optimal choice). From
Stirling’s formula (see, for example, [8]) we can conclude that

for some constant . The binomial coefficients in (40) can be
replaced by the corresponding expressions, and a straightfor-
ward computation leads to the following asymptotic behavior
of the lower bound on :

for sufficiently large .

The bound (41) in the above lemma holds for all that
correspond to a protocol parameterwhich satisfies

. This condition is equivalent to

(42)

The idea of the proof of Theorem 30 is to find the best choice
for (i.e., the best choice of in Protocol B) with respect to
the fixed parameters and , and such that (42) holds. This
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optimal choice of leads to an upper bound on , such that
if is smaller than this bound, then Protocol B works for
secret-key agreement. This is exactly the upper bound stated
in the theorem.

Proof of Theorem 18:According to (39) and (41), Protocol
B (with parameter ) works for secret-key agreement if

(43)

and if the condition (42) also holds. The reason is that (43)
implies that Eve’s error probability about the bit sent by
Bob is asymptotically greater than Alice’s error probability
for . Lemma 10 states that this is sufficient for the
possibility of secret-key agreement by public discussion. Let

. Then (43) is satisfied if

(44)

This bound depends on , and from (44) we can determine
the optimal choice for (and hence the optimal choice of
the protocol parameter). The only restriction is that the
choice must be compatible with (42). It is easy to see that
the expression on the right of (44) is maximal for

It is somewhat surprising that if is small and (i.e.,
in a situation which is not advantageous to Alice and Bob)
must be large, and this means thatis only slightly greater
than (whereas the choice is obviously the worst
possible choice). Choosing is compatible with (42)
if . Then the condition (44) is

If , the condition (42) is not fulfilled for .
For (the smallest choice for that
satisfies (42)) the right-hand side of (44) equals

This proves Theorem 18.

Note that the main objective of the above analysis of
Protocol B is to show that it leads to a strict improvement of
Protocol A, rather than to characterize the performance of the
protocol completely. In particular, the bounds of Theorem 18
are not tight by two reasons. First, it is not necessary to choose

such that is a possible choice for, as done in the
proof of Lemma 21. Secondly, we have compared Alice’s error
probability with Eve’s conditional error probability, given that
Alice’s bit is correct. Eve’s error probability, given thatAlice
accepts, is greater, because, given thatAlice does not receive
the correct bit, it is more likely that Eve’s bit is also incorrect.
However, it appears to be difficult to determine Eve’s optimal
strategy of guessing the bit, and hence to compute theexact

error probability of her guess. Note that with an optimal
analysis, Protocol B would clearly turn out to be at least as
good as Protocol A inany situation, because Protocol A is
a special case of Protocol B and corresponds to the choice

. It is finally conceivable that the above results can be
improved when a block protocol is used in which both Alice
and Bob (and not only Bob) have a block that is not composed
by times the same bit. However, such a protocol appears
to be much more difficult to analyze.

APPENDIX C
PROOF OF THEOREM 19

We show that if (32) is satisfied, then a channel, character-
ized by , can be constructed such that .
The only with is , and
the event has probability . The
idea of the proof is to split this into three events ,

, and (where can also occur if
) such that for .

More precisely, the random variable will be defined such
that is possible not only if , but also if

and , whereas is also possible
if and , and, finally, also
if and . We determine the maximal
possible probability of which allows that this
event can completely be split.

We define the random variable as follows, by giving the
joint distribution with :

and otherwise. The parameter is such that

Note that is not possible. It is easy to see that the
random variable can be obtained by sending over a
channel specified by some conditional probability distribution

. We show that for .
For this follows from

and
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For and one can easily verify that

holds, which implies that and are statistically inde-
pendent, given that . If then

obviously holds, and we conclude
and .

The maximal probability such that the event
can be completely split into as above

is the sum of the probabilities
with . Thus the described construction ofworks if

(45)

and this is equivalent to (32).

Remark: Note that the condition given in the lemma is
sufficient, but not necessary for . If

, a better bound can be achieved when and
(as well as and ) are

not transformed symmetrically to , but
each with the maximal possible probability, i.e.,

and , respectively. The condition (19)
for can then be replaced by the better, but
more complicated condition

where
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