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Secret-Key Agreement Over Unauthenticated Public
Channels—Part II: The Simulatability Condition

Ueli Maurer, Fellow, IEEE,and Stefan Wolf

Abstract—This is the second part of a three-part paper on se-
cret-key agreement secure against active adversaries. In the first
part, we showed that when two parties, willing to generate a secret
key, but connected only by a completely insecure communication
channel, have access to independent repetitions of some random
experiment, then the possibility of secret-key agreement depends
on a certain property, called simulatability, of the probability dis-
tribution modeling the parties’ initial knowledge. More generally,
the simulatability condition is important in the context of identifi-
cation and authentication among parties sharing some correlated
but not necessarily identical partially secret keys. Unfortunately,
this condition is a priori not very useful since it is not clear how to
decide efficiently whether it is satisfied or not for a given distribu-
tion . We introduce a new formalism, based on a mechan-
ical model for representing the involved quantities, that allows for
dealing with discrete joint distributions of random variables and
their manipulations by noisy channels. We show that this represen-
tation leads to a simple and efficient characterization of the possi-
bility of secret-key agreement secure against active adversaries.

Index Terms—Authentication, cryptography, secret-key agree-
ment, unconditional security.

I. INTRODUCTION

I N many situations, two parties Alice and Bob, who have ac-
cess to (correlated) information modeled by random vari-

ables and , respectively, can, by communication over an
insecure channel, generate a secret keyabout which an ad-
versary Eve, initially knowing a third random variable, has
virtually no information (e.g., in terms of Shannon entropy). In
particular, Eve cannot obtain substantial information about the
secret key even with infinite computational resources.

In [9], it was shown that such key agreement can be pos-
sible in principle even when Alice and Bob’s communication
channel does not offer authenticity (let alone confidentiality). In
this case, however, the random variables, , and must sat-
isfy a certain condition, callednonsimulatability. Unfortunately,
this condition isa priori not easy to check for a given distribu-
tion . It is the goal of this paper to develop a calculus
for discrete distributions which yields efficient criteria for the
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possibility of key agreement secure against active adversaries.
Further applications of this calculus are also discussed.

The outline of this paper is as follows. In Section II, we re-
peat the definition of simulatability of a distribution and
briefly recall the results of [9], stating that this is the key condi-
tion in the context of unconditional security of key agreement in
the presence of active adversaries. In Section III, we develop a
new calculus, based on representing distributions in a mechan-
ical model, for joint distributions of three random variables and
noisy channels acting on them. Finally, we use this calculus in
Section IV to derive efficiently verifiable criteria for (non-)sim-
ulatability.

II. THE SIMULATABILITY CONDITION

It is not surprising that secret-key agreement secure against
active adversaries, as defined in [9], can only be possible if Alice
and Bob have some initial advantage over Eve in terms of the
distribution . More precisely, it was shown that this ad-
vantage must be such that Eve cannot generate froma random
variable which Bob, knowing , is unable to distinguish from

(and vice versa). The following property of a distribution
was defined in [6] (see also [9]).

Definition 1 [6]: Let , , and be random variables. Then
is simulatable by with respect to , denoted by

if there exists a conditional distribution such that
, where .

Another way of stating that holds is that there
exists a random variable such that , i.e.,

is a Markov chain, with .
In [9], the following facts were shown. The pessimistic result

is that whenever either or holds,
then no secret-key agreement is possible at all in the active-
adversary scenario. The reason is that Bob has no advantage
over Eve from Alice’s viewpoint, orvice versa. Thus, Eve can
impersonate one of the legitimate partners without facing the
risk of being detected, and the protocol being aborted.

On the other hand, however, if neither nor is simulat-
able by Eve, then an active adversary is not much more pow-
erful than a passive one. More precisely, in the scenario where
the parties have access to repeated realizations of their random
variables, the achievable secret-key generation rates do not de-
pend on whether Eve is only a passive wiretapper or an active
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attacker. (Clearly, an active Eve can always block the communi-
cation channel completely and prevent any communication be-
tween Alice and Bob.)

These facts show that the simulatability condition previously
defined is of paramount importance in the context of key agree-
ment secure against active adversaries. Let us begin the analysis
of this condition with two properties of distributions sat-
isfying it.

Consider the special scenario where all the parties obtain
noisy versions of a binary signal (e.g., a satellite signal) over
some independent channels, i.e., where

holds for some binary (see, for instance, [5] or [7]). In this set-
ting, the condition is equivalentto

. One implication of this equivalence is always true, as
Lemma 1 shows.

Lemma 1: Let be a distribution such that
holds. Then

Proof: There exists a conditional distribution such
that . Hence, we have

where the second equality holds since .

However, the inverse implication is not true in general. To
see this, consider the following distribution [8]. Let the
random variables and be binary and distributed according
to

for some . The random variable is generated by
sending over an erasure channel with positive erasure
probability . Clearly, both

and

hold for this distribution if and only if

i.e., . On the other hand, holds
exactly if

It may be somewhat surprising that for ,
Eve cannot simulate with respect to although she has more
information about than provides.

As the example of the noisy versions of a binary signal shows,
the fact that and are simulatable doesnot imply that se-
cret-key agreement againstpassiveadversaries is not possible.
However, the following statement, closely related to the inverse
direction of this implication, is true. Note here that the so-called
intrinsic information was introduced in [8] as a
general upper bound on the secret key rate . The
definition of this quantity is

Lemma 2: Let be such that . Then
both and hold.

Proof: Let be a conditional distribution with

(1)

(Such a distribution exists according to [6].) Equivalently,
is a Markov chain such that (1) holds, i.e.,

is also a Markov chain. We show .
The proof that holds is analogous. Let be
generated from by the channel . (This

extends the Markov chain to , hence
is also a Markov chain.) We show that

holds. To see this, note that

and

because

From (which is true by construction of ) we
conclude that , hence .

III. A C ALCULUS FOR DISCRETEDISTRIBUTIONS AND

CHANNELS

According to Section II, the simulatability condition allows
for separating the cases where secret-key agreement is possible
and impossible in the presence of active adversaries. However,
the characterization isa priori not practical because it depends
on the existence of a particular channel (with certain proper-
ties) among the (uncountably infinite) set of all discrete chan-
nels with given input and output alphabets. In the sequel, we
address the following questions.

• Is it, for a given distribution , possible to decide
efficiently whether holds?

• If holds, is it possible to efficiently find a
channel for which we have ?

We start by analyzing an example.

Example 1: Let the distribution of the random vari-
ables , , and with ranges , ,
and be as follows:
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Fig. 1. Representation ofP .

In order to decide whether holds, let us first
consider the marginal distributions and .

We jointly represent these distributions as follows. We mark
every symbol and every with an empty or filled
circle, respectively, where the size (or mass) of the circle cor-
responds to the probability or , and the position
in the interval is given by the probability or

, respectively (see Fig. 1).

Note that not the entire information about is contained
in this representation: only the distributions and , but
not , can be reconstructed from the quantities represented
in the picture. We will see, however, that whether or notis
simulatable by with respect to depends, not surprisingly,
only on and , as Theorem 1 shows. On the other
hand, not every such representation corresponds to a distribu-
tion . This is only true if the total mass of each point set
is , and if the marginal distribution is equal for both distri-
butions and . The last condition is equivalent to the
fact that the sets of full and empty circles have the same center
of gravity when interpreted as point masses.

Fig. 2. The channelP , andP .

Fig. 3. The channelP , andP .

Let now with be generated by
sending over the channel

For the new distribution , the above representation is as
shown in Fig. 2: two masses have been united in their center of
gravity.

Let then be sent over the additional channel ,

where , with

This corresponds to splitting one of the masses into two (equal)
parts (see Fig. 3).

Finally, let , with , be given by



MAURER AND WOLF: SECRET-KEY AGREEMENT OVER UNAUTHENTICATED PUBLIC CHANNELS—PART II 835

Fig. 4. The channelP , andP .

Fig. 5. The cascaded channelP .

The use of this channel again corresponds to uniting two masses
in their center of gravity. The constellation of the masses with
respect to and are now equal (see Fig. 4), which means that

holds. Hence, is true, and the cor-
responding channel is the cascade of the three channels
above

(see Fig. 5).
We will now make this representation in the mechanical

model more precise and exploit the direct connection between
distributions and channels on one side and mass constellations
as well as mass operations on the other for giving a simple char-
acterization of nonsimulatability. The purpose of the physical
model is to give more intuitive deductions and formulations of
results that could as well be stated and proved purely in terms
of distributions and channels. Later, Theorem 1 makes a direct
link between the two formalisms and justifies the point of view
we take. In the following, particular emphasis is given to an
intuitive presentation.

Fig. 6. Incomparable constellations: none is stronger.

Definition 2: For an integer , an -dimensional
(normed) mass constellation is a family
of pairs with and for all such that

. We additionally assume that the pairs are ordered
with respect to the lexicographic ordering of the vectors. The
center of gravity(centerfor short) of such a constellation
is given by

Two constellations areequicenteredif they have the same center
of gravity. A constellation is derived
from by mass splittingif , and
if there exist , , such that

.

Furthermore, isderivedfrom bymass unionif ,
and if there exist , , such that

.

We call mass splitting and mass unionbasic mass operations.
Neither of them changes the center of gravity. A constellation

is calledstrongerthan , denoted by , if there
exists a finite sequence of basic operations that transforms
into .

It is clear that if , then the two constellations
and are equicentered. On the other hand, there exist equi-
centered constellations such that none is stronger than the other
(see Fig. 6).

Let be the joint distribution of two random variables
and with ranges and . Then, the
-dimensional constellation is defined by

Note that the definition of leads to a one-to-one corre-
spondence between distributions , where , and

-dimensional normed mass constellations
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contained in the simplex characterized by and
.

Theorem 1 links simulatability and mass constellations. In
this context, note first that for every distribution ,
and are equicentered.

Theorem 1: Let be the joint distribution of , , and
. Then is simulatable by with respect to if and only if

is stronger than

Proof: Let and be the joint distributions of
random variables and , and and , respectively. Clearly,

can be obtained from by a mass splitting or
mass union operation if and only if there exists a “splitting
channel” (as in Fig. 2) or a “union channel” (see Fig. 3) ,
respectively, such that

The statement now follows from the facts that every discrete
channel (with output symbols) can be represented as a cas-
cade of splitting and union channels, and that a cascade of chan-
nels is equivalent to the sequence of the corresponding mass op-
erations. The first of these two facts can be shown as follows.
First, all the letters of the input alphabet can be split, one after
the other, to symbols each (by splitting channels with
certain probabilities for each symbol), and they can be united
by union channels to the output symbols of the discrete channel.
The second fact is obvious.

Unfortunately, the condition given in Theorem 1 isa priori
not more than a new formulation of simulatability, and is not
obviously verifiable more efficiently. However, it leads to an
efficiently checkable criterion as Corollary 3 and Theorem 5
later show.

As a preparation for these results, we describe a special mass
operation, calledmass approach, that can be composed by four
basic operations (see Fig. 7).

Lemma 3: Let a constellation be
given, and let , . We denote by

the center of gravity of theth and th masses. Then, for every
, there exists a sequence of four basic mass operations

transforming into the constellation that one obtains when the
th and th pairs are replaced by the pairs

and

(which must be correctly put into the ordering).
Proof: The idea is that the masses and “exchange”

a suitable mass , i.e., that both masses
are split into two parts, one of which is equal to in both cases,

Fig. 7. A mass approach.

and the union operation is applied twice to the remaining mass
with the -part of the other mass. Hence, four basic operations
are required. Because the choice leaves and un-
changed, whereas corresponds to mass
union, and since the result depends linearly on, every posi-
tion of and on their connecting line such that the masses
are closer to each other, and such that the center of gravity re-
mains unchanged, can be achieved this way. More explicitly, the
mass must be chosen as .

IV. EFFICIENTLY CHECKING FORSIMULATABILITY

A. The Binary Case

We have now established the mechanical model and the nec-
essary techniques for our characterizations of simulatability. In
Corollary 3, we give a simple and efficiently verifiable, both
necessary and sufficient condition for simulatability with re-
spect to abinary random variable . Furthermore, the proof of
Theorem 2 additionally shows that the corresponding channel

can even be computed efficiently.
We first define what it means that a one-dimensional mass

constellation is “more centered” than another. This relation
leads to the characterization we are looking for. Note that this
relation is not a total ordering of the set of constellations. When
considering two random mass constellations, typically no one
will be more centered than the other (see Fig. 6).

Definition 3: For a one-dimensional mass constellation
and for , we denote by the leftmost masses
of of total amount . (Typically, of one of the masses in ,
only a part will be in .) A constellation is calledmore
centeredthan , denoted by

if for all

holds, where stands for the center of gravity of a setof
masses.

Note first that this is a symmetric notion, i.e., that “left” and
“ ” could be replaced by “right” and “” without changing
the definition. Given two (finite) mass constellations, this quan-
tity can be efficiently checked (i.e., in time linear in the total
number of masses—there cannot exist a more efficient algo-
rithm since all the masses have to be taken into account). To
see this, note that is equivalent
to the fact that for every , the center of the set of
masses is not left of (i.e., smaller than) the center
of .
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Theorem 2: Let two equicentered one-dimensional mass
constellations and be given. Then, is stronger than

if and only if is more centered than

Clearly, Corollary 3 follows immediately from Theorems 1
and 2.

Corollary 3: Let be the joint distribution of random
variables , , and , where is binary. Then, is simu-
latable by with respect to if and only if is more
centered than , i.e.,

Proof of Theorem 2:We assume first that

holds. We show by induction that for every , there
exists a sequence of basic mass operations that transforms
into a constellation such that for every

, there exists (where if ) with
and , and such that the center of the

masses of is equal to .
Clearly, this holds for . We assume that the statement

is true for and show its validity also for . Let
be as previously defined.

We transform into as follows. First, the leftmost
among the masses , , of total amount ,
are united into their center of gravity. Let

be the resulting mass. Then, because of and
by the induction assumption, the center of the masses

is not on the right-hand side of
the center of gravity of . Hence there exists
a sequence of mass approaches, applied only to masses among

, such that each of the resulting masses (still
of the same sizes) is on the left-hand side of (or at the same
position as) the corresponding mass of (see Fig. 8). Hence
this new constellation satisfies the induction assumption for

, and this concludes the induction argument.
Therefore, is stronger than some satisfying the above

property, with respect to , for . However, because
and are both equicentered to , and because all masses of

lie, roughly speaking, on the left of (or at the same place as)
the corresponding masses of , we must have that ,
hence .

We show the necessity of the condition for
to hold. Assume for and and for some that

Then, holds because the basic mass operations, i.e.,
mass union (mass splitting leaves all the centers unchanged),
can only move the center of the set to the right (union of
two masses, one in the set , and one in the complement)
or leave it at the same place (union within or within its
complement).

Fig. 8. M andM .

The criterion for simulatability of Corollary 3 is simple and
verifiable in linear time. Moreover, the proof of Theorem 2 also
shows how a channel for simulating with respect to
can be constructed efficiently.

B. The General Case

Let us now, after the complete analysis of the case of a binary
random variable , consider the general case again. In Defini-
tion 4, we give a straightforward, and also efficiently checkable,
generalization of the notion that a constellation is more centered
than another. This leads to anecessarycriterion for simulata-
bility (Theorem 5). However, although it appears to be sufficient
as well in many cases, we give an example for which nonsimu-
latability is not detected by the criterion.

Definition 4: Let and be two -dimensional mass
constellations. Let, furthermore, a line, passing through the
origin, be given. We now consider the orthogonal projections of
all the masses in the -dimensional space onto. This yields
two one-dimensional equicentered mass constellationsand

. We say that is more centeredthan , , if we
have for every line .

It is not difficult to see that also in dimensions
can only hold if holds. The reason is that
follows from : projections of mass operations are mass
operations again.

Theorem 4: Let and be -dimensional equicentered
mass constellations. If is stronger than , then must be
more centered than

Corollary 5: Let be the joint distribution of , , and
. If is not more centered than , then is not

simulatable by with respect to , i.e.,

doesnot hold

Note that this condition is, despite the fact that the number of
lines through the origin is infinite, efficiently verifiable since
the number of points is finite. First, not every direction, i.e.,
every line, has to be checked separately. There are only at most

directions for which the mass constellations are different
(with respect to the order of the masses), whereand are
the numbers of masses in and , respectively. Equal orders
means that, in the -dimensional space, the same masses are
“leftmost.” Hence, all these directions can be treated simultane-
ously by looking at extremal directions. Furthermore, only the
values corresponding to a subset of the masses inhave to
be considered (as in the one-dimensional case).
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Fig. 9. A two-dimensional counterexample.

Unfortunately, the given condition is not sufficient for
simulatability (i.e., for a mass constellation being stronger than
another) in the -dimensional case (although it appears
to be a “good” condition failing to detect nonsimulatability
only with small probability for “random” distributions.) The
following is a counterexample.

Example 2: Consider the following two-dimensional mass
constellations and :

(see Fig. 9).

It is not difficult to see that holds. On the other hand,
cannot be transformed into by basic operations. This is

so because no union operation between a mass on the boundary
of the triangle and a mass in its interior can be performed—such
an operation would irreversibly reduce the total masses on the
boundary, and cannot be obtained. Without such an opera-
tion, however, it is not possible to transform into either;
this is because of the masses in the triangle’s interior.

V. CONCLUDING REMARKS

We have analyzed the so-called simulatability condition
which is of central importance in the context of uncondition-
ally secure identification and authentication between parties
sharing correlated information. For instance, this condition

characterizes the possibility of secret-key agreement based
on joint randomness in the presence of an active adversary
[9]. However, the criterion was not shown to be efficiently
verifiable previously; it was not even clear whether it can be
checked in finite time.

We have introduced a new mechanical model for representing
joint distributions of discrete random variables and their ma-
nipulations by noisy channels. This representation in one di-
mension (i.e., if one of the random variables is binary) leads
to a simple necessary and sufficient criterion for simulatability
which is verifiable in deterministic time linear in .
Moreover, the given algorithm yields the corresponding channel
if simulatability does hold. In the general -dimensional
case, an apparently close-to-tight (yet not sufficient in all cases)
necessarycriterion, which is checkable in time polynomial in

, has been described. It is an open question,
however, to find a simple necessary and sufficient criterion for
the general case.

The introduced formalism can be helpful also with respect
to other problems dealing with discrete distributions and noisy
channels. An example is to determine theintrinsic conditional
information , a quantity that is closely related to the
possibility of secret-key agreement againstpassiveadversaries
[8], [11], [4], [3].
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