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Secret-Key Agreement Over Unauthenticated Public
Channels—Part Il: The Simulatability Condition

Ueli Maurer, Fellow, IEEE,and Stefan Wolf

Abstract—This is the second part of a three-part paper on se- possibility of key agreement secure against active adversaries.
cret-key agreement secure against active adversaries. In the first Further applications of this calculus are also discussed.
part, we showed that when two parties, willing to generate a secret The outline of this paper is as follows. In Section 1, we re-

key, but connected only by a completely insecure communication - . . L
channel, have access to independent repetitions of some randompeat the definition of simulatability of a distributidfyy 7 and

experiment, then the possibility of secret-key agreement depends briefly recall the results of [9], stating that this is the key condi-
on a certain property, called simulatability, of the probability dis-  tion in the context of unconditional security of key agreement in

tribution modeling the parties’ initial knowledge. More generally,  the presence of active adversaries. In Section IlI, we develop a
the simulatability condition is important in the context of identifi- new calculus, based on representing distributions in a mechan-

cation and authentication among parties sharing some correlated . | del. for ioint distributi fh d iabl d
but not necessarily identical partially secret keys. Unfortunately, Ical model, for joint distributions orthree random variables an

this condition is a priori not very useful since it is not clear how to NOISy channels acting on them. Finally, we use this calculus in

decide efficiently whether it is satisfied or not for a given distribu-  Section IV to derive efficiently verifiable criteria for (hon-)sim-

tion Pxyz. We introduce a new formalism, based on a mechan- yatability.

ical model for representing the involved quantities, that allows for

dealing with discrete joint distributions of random variables and

their manipulations by noisy channels. We show that this represen- Il. THE SIMULATABILITY CONDITION

tation leads to a simple and efficient characterization of the possi-

bility of secret-key agreement secure against active adversaries. It is not surprising that secret-key agreement secure against
Index Terms—Authentication, cryptography, secret-key agree- active adversaries, as defined in [9], can only be possible if Alice

ment, unconditional security. and Bob have some initial advantage over Eve in terms of the

distribution Pxy z. More precisely, it was shown that this ad-

vantage must be such that Eve cannot generate famandom

variableX which Bob, knowingd, is unable to distinguish from

N many situations, two parties Alice and Bob, who have ack¥ (andvice versd The following property of a distribution

cess to (correlated) information modeled by random varlyy z was defined in [6] (see also [9]).

ables X' andY’, respectively, can, by communication over an Definition 1[6]: Let X, Y, andZ be random variables. Then

insecure channel, generate a secret Kegbout which an ad- .. . .
versary Eve, initially knowing a third random variable has X'is simulatable by? with respect ta”, denoted by

virtually no information (e.g., in terms of Shannon entropy). In
particular, Eve cannot obtain substantial information about the simy (7 — X)
secret key even with infinite computational resources.

In [9], it was shown that such key agreement can be pdsthere exists a conditional distributidﬂflz
sible in principle even when Alice and Bob’s communicatiopy.,, wherePw, = 3" Pyz - Py
channel does not offer authenticity (let alone confidentiality). In ] )
this case, however, the random variablesy’, andZ mustsat- ~ Another way of stating thaimy-(Z — X)) holds is that there
isfy a certain condition, calledonsimulatabilityUnfortunately, ©XiSts a random variabl& such that/(X; XY|7) = 0, i.e.,
this condition isa priori not easy to check for a given distribu-XY — 4 — X is aMarkov chain, withPs,. = Pxy.
tion Pyy . It is the goal of this paper to develop a calculus In [9], the following facts were shown. The pessimistic result

for discrete distributions which yields efficient criteria for theS that whenever eitheimy (Z — X) orsimx(Z — Y) holds,
then no secret-key agreement is possible at all in the active-
adversary scenario. The reason is that Bob has no advantage
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attacker. (Clearly, an active Eve can always block the commuitimay be somewhat surprising that foe [1 — h(«a), 1 — 2],
cation channel completely and prevent any communication kdeve cannot simulat& with respect td” although she has more
tween Alice and Bob.) information aboult” than X provides.

These facts show that the simulatability condition previously As the example of the noisy versions of a binary signal shows,
defined is of paramount importance in the context of key agretite fact thatX andY are simulatable doasot imply that se-
ment secure against active adversaries. Let us begin the analgmi$-key agreement againsissiveadversaries is not possible.
of this condition with two properties of distributiod¥cy  sat- However, the following statement, closely related to the inverse
isfying it. direction of this implication, is true. Note here that the so-called

Consider the special scenario where all the parties obtamtrinsic informationI(X;Y | Z) was introduced in [8] as a
noisy versions of a binary signal (e.g., a satellite signal) ovgeneral upper bound on the secret key #&; Y||Z). The
some independent channels, i.e., where definition of this quantity is

I(X;Y | Z):= min I(X;Y|Z).
Pxyzir = Px\r- Pyir- Pzir XY—~Z—-2Z
holds for some binary (see, for instance, [5] or [7]). In this set-bolt‘ﬁg‘nrl"f‘é Ift)?;;r?dglils\u(c; T»ag))i’o}lfd_l Z) = 0. Then

ting, the conditiorsimy (Z — X) is equivalento I(Y; Z) > . - . P :
I(Y; X). One implication of this equivalence is always true, as Proof: Let Pz, be a conditional distribution with

Lemma 1 shows. I(X;Y[Z) = 0. 1)
(Such a distribution exists according to [6].) Equivalently,
XY — Z — Zis a Markov chain such that (1) holds, i.e.,
X — Z — Y isalso a Markov chain. We shaiitny (Z — X).

Lemma 1: Let Pxy z be a distribution such thaimy (Z —
X) holds. Then

1(Y:2) > I(Y; X) The proof thakimx(Z — Y) holds is analogous. LeX be
T T generated fromZ by the channelPs,; := Py;. (This
Proof: There exists a conditional distributidfiy , such extends the Markov chain &y — Z — 7 — X, hence
that P, = Pxy. Hence, we have XY — Z — X is also a Markov chain.) We show that
P+, = Pxy holds. To see this, note that
I(YaZ):H(Y)_H(Y|Z)_ PYYZZPYE'PY|YZZPY2'PY\E
=H(Y)-H(Y|ZX) and
ZH(Y)__H(Y|X) Pxyvz =Pxz Pyixz = Pxz Pyz
=1(Y;X) because
=I(Y; X _ _
(Y3 X) I(X;Y|Z2)=1(X;Y|Z) = 0.
where the second equality holds sing&”; X|Z) = 0. O From P = Py (Which is true by construction ak) we
However, the inverse implication is not true in general. Teonclude that’<y.7 = Py, hencePsy. = Pxy. .
see this, consider the following distributidtyy-~ [8]. Let the
random variablet andY be binary and distributed according ~ !ll. A CALCULUS FOR DISCRETE DISTRIBUTIONS AND
to CHANNELS
1- According to Section II, the simulatability condition allows
Pxy(0,0) =Pxy(1,1) = 5 for separating the cases where secret-key agreement is possible
o and impossible in the presence of active adversaries. However,
Pxy (0, 1) = Pxy(1,0) = 5 the characterization @ priori not practical because it depends

on the existence of a particular channel (with certain proper-
for somea < 1/2. The random variable is generated by ties) among the (uncountably infinite) set of all discrete chan-
sending[X, Y] over an erasure channel with positive erasureels with given input and output alphabets. In the sequel, we

probability1 — r. Clearly, both address the following questions.
« Is it, for a given distributionPxy z, possible to decide
simy(Z — X) and simx(Z —Y) efficiently whethemsimy (Z — X) holds?
S _ ) * If simy (Z — X) holds, is it possible to efficiently find a
hold for this distributionPxy z if and only if Cha”nelpﬂz for which we haveP,. = Pxy?

. 1—7 . We start by analyzing an example.
T —_— — ) . i .
2 Example 1: Let the distributionPxy » of the random vari-

ablesX, Y, andZ with rangesY = {z1, 22}, Y = {y1, y2}.
andZ = {z, 29, 23} be as follows:

Pxyz(z1, y1, z21) =6/100
r>1—h(a). Pxy z(x2, y1, 21) =4/100

i.e.,r > 1— 2a. Onthe other hand(Y; Z) > I(Y; X) holds
exactly if
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Pxyz(x1, y1, 22) =9/100
Pxyz(x2, y1, 22) =6/100
Pxyz(71, y1, 23) =15/100 12 3/4 4
Pxyz(w2, y1, 23) =10/100 ——@— O — ]
Pxyz(z1, Y2, 21) = 36/100 0 0.5 ‘ 1
Pxy z(w2, ya2, 21) =4/100 12
Pxyz(x1, ya2, 22) =9/100 Fig. 2. The channeP, ) ,, andPy. ().
Pxy z(x2, y2, 22) =1/100
Pxyz(x1, y2, 23) =0 z? z?
Pxy z(w2, Y2, 23) =0. / 2@
@)
z
In order to decide whetheimy (Z — X) holds, let us first ' 2 Z?)
consider the marginal distributiod%yy andPy-. ; ;2>.<:
3
12 Z3
Pxy | y1 | w2 Px(z;) | Pyix=s (1)
12 34 /4
o | 03] 045 || 075 0.4 — @+
- 1/4
0 0.5 1
To 0.2 ] 0.05 0.25 0.8 14
Fig. 3. The channeP, () ,(2), andPy (3).
Pyz Y1 Y2 Py (z) Pyiz—., (1) 5 (o
Let now Z® with 2 = {z{? 2{)} be generated by
21 0.1 0.4 0.5 0.2 sendingZ over the channel
(2) _
2Zo 0.15 | 0.01 0.25 0.6 Pre)|z (Zl ) Zl) =1
(2) _
23 0.25 | 0 0.25 1 Pz 4 (Zz ; 22) =1

Pye)z (352)7 Z3> =1

We jointly represent these distributions as follows. We maikyy the new distributioyy 2 , the above representation is as
every symbol; € X and every; € Z withan empty orfilled shown in Fig. 2: two masses have been united in their center of
circle, respectively, where the size (or mass) of the circle cQjrayity.
responds to the probabilityy (;) or Pz(z;), and the position | et thenz(?) be sent over the additional chant@}s)
|Zr;the intervall0, 1] is given by the_ probability*y-| x —, (y1) or Wherez® — {Z§3)7 253)7 25)3)}, with

viz==,(y1), respectively (see Fig. 1).

Note that not the entire information abaddty z is contained Py 1z (253)7 252)) =1
in this representation: only the distributioRsy and Py, but p 3 @) _q/9
not Pxy 7, can be reconstructed from the quantities represented z)z23 (22 i ) =1/
in the picture. We yvill see, however, that whether or_JX_ois Py ze (zgz’,), zéz)) =1/2.
simulatable byZ with respect toY” depends, not surprisingly,
only on Pxy and Py z, as Theorem 1 shows. On the otheThis corresponds to splitting one of the masses into two (equal)
hand, not every such representation corresponds to a distriparts (see Fig. 3).
tion Pxy z. This is only true if the total mass of each point set Finally, Ieth‘Z(a), with X = {, T»}, be given by
is 1, and if the marginal distributio#y- is equal for both distri-
butions Pxy and Py z. The last condition is equivalent to the PY|Z<3> (fl, zf’)) =1
fact that the sets of full and empty circles have the same center

: ) ) P z B\ 1

of gravity when interpreted as point masses. X|2® (3?1» ) )
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Z<3> ; (0.1,0) (0.5,0.25) (0.8,0.5) (0.5,0.75) (0.1,1)
® #—b———o@o————o—‘——v————o—@—»—o—Q
Z,
[©)}
Zy — Fig. 6. Incomparable constellations: none is stronger.

Definition 2: For an integerN > 1, an N-dimensional
(normed) mass constellatid” := (m;, a;);=1, .. ¢ is afamily

;’i /4 of pairs withm; € (0, 1] anda; € [0, 1]V for all i such that
% + = = = = = = 9 = 3 >, m; = 1. We additionally assume that the pairs are ordered
0 ‘ 0.5 1 with respect to the lexicographic ordering of the vectqrsThe
/4 center of gravity(centerfor short)c(M) of such a constellation
3/4 is given by

Fig. 4. The channeP- (), andPyyx.

£
= E m;a;.
i=1

z X
zZ, _ Two constellations arequicenteredf they have the same center
X of gravity. A constellationV’ = (m}, a});=1, . ¢ is derived
Z2 172 . from M = (m;, a;);=1, . ¢ by mass splittingf ¢ = ¢+ 1, and
X2 if there existd) < p < 1,1 < 79 < ¢, such that
Zs 12
(mi, a;), 1<i<i
z X pmiy, ai i=i
, (m'” a/[) _ ( 0 0) . .0
! — (( )mm? abo) t=10+1
L2 . (mi_1, ai_1), io+1<i<l+1.
2 12 12 —
, - 2 Furthermore)!’ is derivedfrom M by mass uniorif ¢/ = /-1,
3 and if there exist; < i, 11 < i, < i3, such that
Fig. 5. The cascaded chanmely, ,. ¢ (ma, a), 1<i<iy
(mig1, aiy1), 11 <1 <y
PYIZ(S) (EQ, Z§3)> =1.
, , (mil + My,
The use of this channel again corresponds to uniting two masses(m'iv a;) = my as +miyai, ) P—=
in their center of gravity. The constellation of the masses with iy Ty ’ “
respecttaX andX are now equal (see Fig. 4), which means that (mi, a;) Ty <1< ig
P+, = Pxy holds. Hencesimy (Z — X) istrue, and the cor- (i1, aip1), iy <i<l—1.
responding channe‘PXlZ is the cascade of the three channels
above We call mass splitting and mass unibasic mass operations

Neither of them changes the center of gravity. A constellation
M is calledstrongerthan M’, denoted byM ~~ M’, if there

P+ (fl. 21> =
X|z\*1
exists a finite sequence of basic operations that transfarms

_ into M’.
PX|Z(:E1 2’3) = XIZ(IEQ, 2’3) = 1/2
_ It is clear that ifM ~~ M’, then the two constellation®/
(see Fig. 5). and M’ are equicentered. On the other hand, there exist equi-

We will now make this representation in the mechanicgentered constellations such that none is stronger than the other
model more precise and exploit the direct connection betwegiee Fig. 6).
distributions and channels on one side and mass constellationset P,y be the joint distribution of two random variables
as well as mass operations on the other for giving a simple chgrand v with ranges/ andV = {v1, ..., vny41}. Then, the
acterization of nonsimulatability. The purpose of the physical-dimensional constellatiof/;;.v is defined by
model is to give more intuitive deductions and formulations of
results that could as well be stated and proved purely in terms/y;_y = (Py(u), (Pyvjy—u(v1), - - -, Priv—u(vn)))ueu-
of distributions and channels. Later, Theorem 1 makes a direct
link between the two formalisms and justifies the point of view Note that the definition ol/y;._y leads to a one-to-one corre-
we take. In the following, particular emphasis is given to aspondence between distributioRsy , where|V| = N +1, and
intuitive presentation. N-dimensional normed mass constellations;, a;)i=1, ...
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0.5 1

contained in the simplex characterized by); > 0 and
N
Zj:l (a)] S ]"
Theorem 1 links simulatability and mass constellations. In
this context, note first that for every distributiétyy 7, Mx .y
and Mz y are equicentered.

Center of Gravity
Theorem 1: Let Pxy z be the joint distribution of(, Y, and

Z.ThenX is simulatable by with respect tdy” if and only if
Mx .y is stronger tharM 7

Fig. 7. A mass approach.

and the union operation is applied twice to the remaining mass
simy (Z — X) <= Mz_y ~» Mx._y. with them,.-part of the other mass. Hence, four basic operations
are required. Because the choigg = 0 leavesn; andm,; un-
Proof: Let PUlV and PUQV be the jOint distributions of Changed, Wherea&e — min{m“ mi’} Corresponds to mass
random variable&; andV’, andU, andV', respectively. Clearly, ynjon, and since the result depends linearly:an every posi-
My, v can be obtained from/y, —v by a mass splitting or tjon of m; andm, on their connecting line such that the masses
mass union operation if and only if there exists a “splittingre closer to each other, and such that the center of gravity re-
channel” (as in Fig. 2) or a “union channel” (see FigF3) ;; .  mains unchanged, can be achieved this way. More explicitly, the

respectively, such that massm. must be chosen as: min{m;, ms }. 0
PEQV(W’ = Zu Pov(w, 0)- Pﬁlel (uz, u1) IV. EFFICIENTLY CHECKING FOR SIMULATABILITY
uy €Uy
= Py,v(us2, v). A. The Binary Case

We have now established the mechanical model and the nec-

TE © staltemtehr;; nO\{{v f(:llowsbfrlom the gacts that e\t/e(;y d'screé%sary techniques for our characterizations of simulatability. In
c Znn? (V:I'Itt' oudpu Sym ho S) clan edrt(ra]p;esen € das "’; CaC?E)rollary 3, we give a simple and efficiently verifiable, both
cade of Spiitling and union channels, and that a cascade o Chn"i’g'(:essary and sufficient condition for simulatability with re-

nels is equivalent to the sequence of the corresponding masi%fe—ct to dinary random variabl@”. Furthermore, the proof of

eTa“O”S- The first of these two facts can be shown_ as follo eorem 2 additionally shows that the corresponding channel
First, all the letters of the input alphabet can be split, one aftg_

the other. t bol h (b 1 splitting ch s with X,z ¢aneven be computed efficiently.
€ other, tam Symbo’s eac (byn — 1 splitting channels wi .. We first define what it means that a one-dimensional mass
certain probabilities for each symbol), and they can be unlt%

b . h Is to th tout bols of the di te ch nstellation is “more centered” than another. This relation
Y union channeis to the output Symbols otthe discrete Chamngl s 1o the characterization we are looking for. Note that this
The second fact is obvious.

relation is not a total ordering of the set of constellations. When
Unfortunately, the condition given in Theorem laispriori  considering two random mass constellations, typically no one

not more than a new formulation of simulatability, and is nowvill be more centered than the other (see Fig. 6).

obviously verifiable more efficiently. However, it leads to an

efficiently checkable criterion as Corollary 3 and Theorem 5 17000 < 1 < 1. we denote by’:(M) the leftmost masses

later show. of M of total amount. (Typically, of one of the masses i,

As a preparation for these results, we describe a special mS‘ﬁR/ a part will be inf, (M).) A constellationM is calledmore

operation, callednass approacithat can be composed by fourcenterecthanM denoted by
basic operations (see Fig. 7). '

Definition 3: For a one-dimensional mass constellatiah

!
Lemma 3:Let a constellationM = (m;, a;)i=1,.. ¢ be M <M,
given, and let # i/, 1 < 7, 7' < £. We denote by if for all ¢
s = (i ) (o + ) (0 M) 2 etV

. , .
the center of grawt_y of théth andi’th masses, .Then, for evethoIds, where:(S) stands for the center of gravity of a sebf
A € [0, 1], there exists a sequence of four basic mass operations

transforming) into the constellation that one obtains when thréwasses.
1th andi’th pairs are replaced by the pairs Note first that this is a symmetric notion, i.e., that “left” and
“>" could be replaced by “right” and<” without changing
(mi, a; + Aci o — ai)) the definition. Given two (finite) mass constellations, this quan-
and tity can be efficiently checked (i.e., in time linear in the total
(mir, ap + Mei o — ai)) number of masses—there cannot exist a more efficient algo-
’ rithm since all the masses have to be taken into account). To
(which must be correctly put into the ordering). see this, note tha/’ = (m}, a});=1, ..« < M is equivalent
Proof: Theideais that the masses andm; “exchange” to the fact that for every < k < ¢/, the center of the set of
asuitable mass < m, < min{m,;, m; }, i.e., that both massesmassesn}, ..., m} is notleft of (i.e., smaller than) the center

are splitinto two parts, one of which is equattq in both cases, of £m11+...+m; (M).
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Theorem 2:Let two equicentered one-dimensional mass . M
constellationsM and M’ be given. Then) is stronger than !
M’ if and only if M’ is more centered thal/ m;’ m, r;z\ ‘dnljl(,ﬂ . my

/ / — — — U_ i :_. E 8 I !
M~ M <= M < M. om,  m, myeem 'om, |

Clearly, Corollary 3 follows immediately from Theorems 1 M;

and 2.
o o Fig. 8. M’ andMj ;.

Corollary 3: Let Pxyz be the joint distribution of random
variablesX, Y, andZ, whereY is binary. Then,X is simu-  Tpe criterion for simulatability of Corollary 3 is simple and
latable by~Z with respect toY” if and only if Mx .y is more yerifiaple in linear time. Moreover, the proof of Theorem 2 also
centered than/z .y, i.e., shows how a channéty , for simulatingX with respect td”

simy (Z — X) < My_y < Mz_y. can be constructed efficiently.

Proof of Theorem 2:We assume first that B. The General Case

Let us now, after the complete analysis of the case of a binary
random variabléd”, consider the general case again. In Defini-
holds. We show by induction that for eveby< j, < ¢, there tion 4, we give a straightforward, and also efficiently checkable,
exists a sequence of basic mass operations that transffrmsgeneralization of the notion that a constellation is more centered
into a constellatiod;, = (my, ax),_, 7suchthatforevery than another. This leads toreecessaryriterion for simulata-

j < jo, there existsi(j) (wherek(j) # k(j') if j # j') with  bility (Theorem 5). However, although it appears to be sufficient
M) = m; andag) < af, and such that the center of theas well in many cases, we give an example for which nonsimu-
massesny, ..., m;, of Mj, is equal toc(£m, 4.4, (M)). latability is not detected by the criterion.

_ Clearly, thls.holds forjp = 0. We assume that the statement pafinition 4: Let M and M’
is true for0 < jo < ¢ and show its validity also fojfy + 1. Let
M;, = (T, ar),_, 7 be as previously defined.

We transformi/;, into M, 41 as follows. First, the leftmost
among the masseésj, 1, 7, +2, - - -, Of total amountm’, . ;,
are united into their center of gravity. Let

M' = (mf, a})j=1, . 0 < M = (m;, a;)i=1, ..

be two N-dimensional mass
constellations. Let, furthermore, a lide passing through the
origin, be given. We now consider the orthogonal projections of
all the masses in th& -dimensional space ontb. This yields
two one-dimensional equicentered mass constellatiépsand
M} . We say that\/’ is more centerethanM, M’ < M, if we

— — — ! H
(Mo 415 @jo-41) = (M 41, Tjot1) haveM| < M;y, for every lineL.

by the induction assumption, the center of the massgdn only holdifM” < M holds. The reason is thafy, ~ M,
(M1, @) (1041, @jo41) S NOt 0N the right-hand side of follows from 7 ~~ M projections of mass operations are mass
’ y Tt Jo ? 0

the center of gravity of,,,; ;' (M’). Hence there exists operations again.
J0

a sequence of mass approaches, applied only to masses amo@eorem 4: Let M and M’ be N-dimensional equicentered

mi, ..., Mj,+1, such that each of the resulting masses (stihass constellations. ¥/ is stronger thad/’, then)M’ must be
of the same sizes) is on the left-hand side of (or at the sam@re centered thah!

position as) the corresponding massi\déf (see Fig. 8). Hence , ,

this new constellation satisfies the induction assumption for MM =M <M

jo + 1, and this concludes the induction argument.
Therefore,M is stronger than som&/ satisfying the above 7

property, with respect td1’, for jo = ¢’. However, becausg/ '

and M’ are both equicentered fd, and because all masses o

M lie, roughly speaking, on the left of (or at the same place as) Mx—y A Mz_y = simy(Z — X)) doesnot hold.

the corresponding massesdf, we must have that/ = M’, Note that this condition is, despite the fact that the number of

Corollary 5: Let Pxy z be the joint distribution o', Y, and
If Mx_y isnotmore centered tha®/z._y, thenX is not
?imulatable byZ with respect tdv, i.e.,

henceM ~~ M’. lines through the origin is infinite, efficiently verifiable since
We show the necessity of the conditidf’ < M for M ~»  the number of points is finite. First, not every direction, i.e.,
M’ to hold. Assume fol/ and M’ and for some that every line, has to be checked separately. There are only at most

/ “+) directions for which the mass constellations are different
c(L(M)) < ebi(M)). ((wi2th) respect to the order of the masses), wheand ¢/ are
Then,M + M’ holds because the basic mass operations, i.the numbers of massesid andM’, respectively. Equal orders
mass union (mass splitting leaves all the centers unchangedgans that, in thév-dimensional space, the same masses are
can only move the center of the getM) to the right (union of “leftmost.” Hence, all these directions can be treated simultane-
two masses, one in the sg{ M), and one in the complement)ously by looking at extremal directions. Furthermore, only the
or leave it at the same place (union witlfy{ M) or within its  valuest corresponding to a subset of the masse&/inhave to
complement). O be considered (as in the one-dimensional case).
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Fig. 9. A two-dimensional counterexample.
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characterizes the possibility of secret-key agreement based
on joint randomness in the presence of an active adversary
[9]. However, the criterion was not shown to be efficiently
verifiable previously; it was not even clear whether it can be
checked in finite time.

We have introduced a new mechanical model for representing
joint distributions of discrete random variables and their ma-
nipulations by noisy channels. This representation in one di-
mension (i.e., if one of the random variables is binary) leads
to a simple necessary and sufficient criterion for simulatability
which is verifiable in deterministic time linear |&'|+ | V| +| Z|.
Moreover, the given algorithm yields the corresponding channel
if simulatability does hold. In the genera(> 2)-dimensional
case, an apparently close-to-tight (yet not sufficient in all cases)
necessaryriterion, which is checkable in time polynomial in
|X| + |Y| + |Z], has been described. It is an open question,
however, to find a simple necessary and sufficient criterion for
the general case.

The introduced formalism can be helpful also with respect
to other problems dealing with discrete distributions and noisy
channels. An example is to determine th&insic conditional
information/(X;Y | Z), aquantity thatis closely related to the
possibility of secret-key agreement agaipatsiveadversaries

Unfortunately, the given condition is not sufficient for[8] [11], [4], [3].
simulatability (i.e., for a mass constellation being stronger than

another) in theV (> 2)-dimensional case (although it appears
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