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Secret-Key Agreement Over Unauthenticated Public
Channels—Part III: Privacy Amplification

Ueli Maurer, Fellow, IEEE,and Stefan Wolf

Abstract—This is the third part of a three-part paper on se-
cret-key agreement secure against active adversaries. Here, we con-
sider the special case where the legitimate partners already share
a mutual string which might, however, be partially known to the
adversary. The problem of generating a secret key in this case has
been well studied in the passive-adversary model—for instance, in
the context of quantum key agreement—under the name ofprivacy
amplification. We consider the same problem with respect to an ac-
tive adversary and propose two protocols, one based on universal
hashing and one based on extractors, allowing for privacy ampli-
fication secure against an adversary whose knowledge about the
initial partially secret string is limited to one third of the length
of this string. Our results are based on novel techniques for au-
thentication secure even against adversaries knowing a substantial
amount of the “secret” key.

Index Terms—Authentication, cryptography, privacy amplifica-
tion, quantum key agreement, secret-key agreement, unconditional
security.

I. MOTIVATION, DEFINITION, AND PRELIMINARIES

A. Protocol Definition

A SPECIAL case of the general key agreement scenario de-
fined in [15] is the situation where the parties Alice and

Bob already share a string , about which, however,
the adversary has possibly substantial information. The problem
of transforming this partially secret string into a virtually secret
key is calledprivacy amplification; it is the final phase of
many key-agreement protocols.

Privacy amplification was first described in the context of
quantum key agreement by Bennettet al. [2], where universal
hashing was shown to be a good technique in the case where the
adversary possessesdeterministicinformation about . More
precisely, it was shown that the key must be shorter than,
and that must be equal to the amount of in-
formation the adversary has about, plus a security parameter.
This result was generalized by Bennettet al.[1] to probabilistic
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information about . From Eve’s point of view, the length of
can in this case be roughly equal to theRényi entropyof .

In this paper, we investigate the same problem under the as-
sumption that the communication between Alice and Bob isnot
authenticated. Note that, in contrast to the model where many
independent repetitions of the involved random variables are
given [15], the same piece of informationmust be used here
both for authentication and as the input for privacy amplifica-
tion. Two problems that arise in this context are authentication
with an only partially secret key, and the fact that this authenti-
cation leaks information about, hence potentially also about

, to the adversary. We show that for our purpose, a new, inter-
active, authentication method is better than one-way authentica-
tion by strongly universal hashing, and that so-calledextractors,
requiring fewer random bits (i.e., shorter messages to be com-
municated), are a better technique for privacy amplification than
universal hashing.

The outline of this paper is as follows. In Section I-B, we de-
fine the notion of a protocol for privacy amplification by com-
pletely insecure communication. This is a modified version of
the protocol definition for the scenario of independent realiza-
tions as given in [15]. In Section I-C, we show some impos-
sibility results. Section I-D analyzes, as a preparation, the ef-
fect of side information on certain important entropy measures,
and connects the entropy of strings and parts thereof. Then, we
present two different protocols for privacy amplification secure
against active adversaries. Protocol UH (Section II) is based on
universal hashing, whereas Protocol EX (Section III) uses ex-
tractors for transforming to . It is shown in Section V that
each of these protocols can be better than the other in certain
situations. The used techniques for authentication and identifi-
cation are introduced in Sections II-A, II-B, and III-A.

B. Protocol Definition

The protocol definition for privacy amplification secure
against active adversaries can be strengthened in two respects
as compared to the definition in the general case [15]. First,
we require that Alice and Bob both accept and end up with the
same string with probability if Eve is passive. Moreover, the
protocols can work for an entireclassof distributions
instead of only one distribution. More precisely, Eve’s knowl-
edge about the mutual-bit string is limited by assuming
that is, for all , contained in some subset of
all possible distributions over the set . Typically,
consists of distributions satisfying a certain condition in terms
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of 1 Rényi entropy or min-entropy. We denote, for everyand
or , by the subset of

distributions over -bit strings.

Definition 1: Assume that Alice and Bob both know an-bit
random variable , and that the random variablesummarizes
Eve’s entire knowledge about. Let be a subset of all proba-
bility distributions on the set of -bit strings, let be an integer,
and let . An -protocol for privacy am-
plification by communication over an insecure and unauthenti-
cated channel(arobust -PA-protocolfor short) is
a key-agreement protocol, as defined in [15], with the following
properties.

1) Correctness and Privacy.Let Eve be a passive wiretapper
receiving a particular value satisfying .
Then, both Alice and Bob must accept at the end of the protocol,
and there must exist an-bit string such that
and hold, where is the protocol
communication. In this case, we say that privacy amplification
has beensuccessful.

2) Robustness.Let . For every possible strategy
of Eve, the probability that eitherboth Alice and Bob reject
the outcome of the protocol, or privacy amplification has been
successful, must be at least .

C. Impossibility Results

Clearly, the impossibility results of [15] immediately carry
over to privacy amplification secure against active opponents
(where the nonsimulatability condition is fulfilled in all non-
trivial cases). There exists neither a protocol with perfect syn-
chronization of the accepting states (i.e., both accept or both
reject in every case), nor a one-way-transmission protocol sat-
isfying the required properties.

Theorem 1: Let or . Assume that a robust
-PA-protocol either with perfect synchro-

nization or using only one-way transmission exists. Then, either
, or , or holds.

Proof: Assume

and

We show that there exists, for every fixed function
(on which Alice and Bob could agree without any com-

munication) a distribution such that

Let be the particular set of size

1For a random variableX with rangeX and distributionP , theRényi en-
tropyH (X) is defined as

H (X) := � log P (x) :

Themin-entropyH (X) is

H (X) := � logmaxP (x):

All logarithms here and in the rest of the paper are binary, unless stated other-
wise.

Fig. 1. Information about partial strings.

which minimizes the cardinality of the set

Then

Hence, for we have

Let be the uniform distribution on . Then
we have

and

by construction and by the assumption. This contradicts the pro-
tocol definition, hence, at least one message must be sent in the
protocol. The rest of the argument is as in [15, proofs of Theo-
rems 8 and 9].

D. The Effect of Side Information and Knowledge About
Partial Strings

In this subsection, we provide some facts necessary for the
analysis of Protocols UH and EX for privacy amplification de-
scribed later. We derive bounds on the amount of knowledge
(e.g., of an adversary) in terms of Rényi entropy and min-en-
tropy about a partial string, depending on the amount of knowl-
edge about the entire string. This is done both for the cases
where the adversary does (Corollary 2) or does not (Lemma 1)
obtain information about the remaining part of the string. In both
cases, the result is roughly the intuitive fact that (with high prob-
ability) one cannot know (substantially) more about a part than
about the whole (see Fig. 1). In the case where the adversary
obtains information about the remaining part of the string, the
result follows from a general upper bound on the reduction of
Rényi entropy and min-entropy of a random variable when side
information is given (Lemma 2).

Lemma 1: Let be a random vari-
able consisting of binary random variables. For any-tuple

with , let be
the string . Then

holds for and .
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Proof: Let first . Consider a fixed string
. This particular value of the random vari-

able corresponds to exactly values of the
random variable . Let be the probabilities of
these strings, and let . Now we have

Here, the expectation is with respect to the probability distribu-
tion over the strings. We have made double use of
the fact that the logarithm is a concave function and of Jensen’s
inequality. We conclude that

(1)

Because inequality (1) holds for every particular string
, we have for the collision probabilities2 of

the random variables and

Hence,

For the case , the inequality follows directly from the
fact that the maximal probability of a-bit string is at most
times the maximal probability of a string in.

Remark: Note that when the string is split into two parts
and , then the bounds of Lemma 1 applied toand are

tight simultaneously. For example, let and
be a particular -bit string (where is even), and let and be
the first and second halves of. Define (for some )

for all -bit strings

2For a random variableX with rangeX , the collision probabilityP (X)
is the probability of getting the same outcome twice in two independent re-
alizations, i.e.,P (X) = P (x) . The Rényi entropy ofX is then
H (X) = � log(P (X)).

(and a uniform distribution for the remaining-bit strings), i.e.,
. Then

Intuitively speaking, Eve’s information aboutin terms of min-
entropy appears entirely in both substringsand , a fact that
might contradict one’s intuition.

Lemma 2 gives an upper bound on the reduction of the Rényi
entropy and min-entropy and of a random vari-
able when side information (consisting of a pair of
random variables) is given, where . It states that
this reduction exceeds (where is the range of ) sub-
stantially only with small probability in both cases. (Note that it
is not a trivial fact that no additional reduction is induced by
if . For instance, and
together donot imply that , as
the example shows.)

Lemma 2: Let , , and be random variables with
. Then

for all , and

for .
Proof: We first prove the statement concerning Rényi en-

tropy. The argument is a generalization of [3, proof of The-
orem 4.17]. Let be fixed. It is straightforward that

Hence the probability that
exceeds by more than is at most ,
i.e.,

Furthermore

These inequalities together imply

Finally, holds
because of
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We have used for the last equality thatand are statistically
independent, i.e., that . We conclude that

holds for all , and the first statement of the lemma follows.
Let us address the second statement. Let .

Then we have for all

and hence

This inequality implies that

holds with probability greater than (taken over and
). The statement follows by maximizing over all , and

by taking negative logarithms.

Corollary 2 is a direct consequence of Lemma 2. It states
that a formally slightly weaker result than that of Lemma 1,
concerning the knowledge (in terms of and of ) of a
partial string, even holds when the rest of the string is made
public.

Corollary 2: Let be an -bit string, and let a partition of
into two strings and of lengths and , respectively, be
given. Let be a security parameter. Then the probability,
taken over , that

holds is at least . Furthermore, for , the
probability, taken over , that

holds is at least .

II. PROTOCOLUH BASED ON UNIVERSAL HASHING

A. Message Authentication With a Partially Secret Key I:
Strongly Universal Hashing

All previous results on unconditionally secure authentication
require a key that is completely secret, i.e., its probability dis-
tribution is uniform from the opponent’s point of view. In this
subsection, we prove a result on authentication where the oppo-
nent is allowed to have some partial information about the key.
These techniques are used in the protocols described in the fol-
lowing sections.

There exists a variety of possibility and impossibility results
on information-theoretically secure authentication (see, for ex-
ample, [20], [11], or [21]). The following two types of attacks
are possible. In animpersonation attack, the opponent tries to
generate a (correctly authenticated) message, and in asubsti-
tution attack, the adversary observes a correctly authenticated
message and tries to replace it by a different correctly authen-
ticated message. The success probabilities are denoted by
and , respectively. (General lower bounds on these proba-
bilities are given in [11].)

One possibility for realizing information-theoretically secure
authentication is by using strongly universal classes of hash
functions (see, for example, [21]).

Definition 2: A class of (hash) functions is called
strongly universal(or SU for short) if for all distinct

and for all , the number of functions for
which both and hold is .

Remark: Note that a strongly universal class has in particular
the following property. For every and , the number
of functions such that holds is . This is
true because for all , , and , we have

By roughly the same argument one can also show that a
strongly universal class is in particular universal (see Defini-
tion 3); a fact that is suggested by the names of the properties.

A strongly universal class of hash functions can immediately
be used for authentication: the secret key determines a hash
function of the class, and the message is authenticated by its
hash value. The authentication code corresponding to an SU
class of hash functions satisfies

(because of the property mentioned in the above remark) and

(which follows directly from the definition). An SU class
of functions mapping -bit strings to -bit strings can be
constructed similarly to the universal class described in [15].
Namely, the class

(2)

where

is an SU class of hash functions with
elements, i.e., with a key of length .

Let us now investigate the scenario in which the key is not en-
tirely secret, i.e., where the opponent Eve has a certain amount
of information about this key. The following result states that in-
formation-theoretically secure authentication is possible under
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the condition that the Rényi entropy of the key from the adver-
sary’s viewpoint is greater than half the length of the key.

Theorem 3: Let be a binary string of (even) length. As-
sume that is used by two parties as the key in the authenti-
cation scheme based on strongly universal hashing with respect
to the class (2), that an adversary knows a random variable,
jointly distributed with according to some probability distri-
bution, and that the opponent has no further information about

. Let

for a particular in the range of . Then, the probabilities of
successful impersonation and substitution attacks, given ,
are upper-bounded by

and

(3)

respectively.

Remark: Note that in Theorem 3 it need not be assumed that
the message observed by Eve be independent of(but indepen-
dent of given ). For example, inequality (3) holds even
when the message is selected by Eve herself.

Proof: First we prove the upper bound on the success
probability of the impersonation attack. For every pos-
sible message GF and for every authenticator

GF there exist exactly possible keys such that
is the correct authenticator for . The probability of such a

set of keys, given that , can be upper-bounded as follows.
In the worst case (i.e., the best case for the impersonating
attacker) the keys all have the same probability, say.
Then must satisfy

i.e.,

Hence,

Let us now consider the substitution attack. The crucial ar-
gument is that the keyis uniquely determined by
and if . Hence, the probability of a suc-
cessful substitution attack is not greater than the probability of
guessing correctly when given . From Lemma
2, and because , we can conclude that

(4)

holds with probability at least . On the other
hand, if inequality (4) holds, then the maximal probability of a
particular key is at most

Thus, we have, by the union bound

Remark: It has been proposed to use smaller but “weaker”
classes of functions, so-called-almost strongly universal
( -ASU) hash functions, instead of strongly universal hashing
for authentication [21]. Such classes allow for authentica-
tion with a substantially smaller secret key at the price of a
somewhat greater success probability of a substitution attack.
However, for the purpose of authentication with apartially
secret key, these classes of functions do not lead to better
results. Whenever the Rényi entropy of the partially secret key
is smaller than half the length of the key, then no uncondition-
ally secure authentication is possible with this key by using
( -A)SU hashing because one correct message–authenticator
pair can reveal the remaining information necessary to uniquely
determine the key.

B. Challenge-Response Identification With a Highly Insecure
Key

In the preceding subsection, we have shown that message au-
thentication is possible with a partially secret key, or more pre-
cisely, with a key the Rényi entropy of which (from the adver-
sary’s point of view) is more than half its length. In this subsec-
tion, on the other hand, we prove that a certain type of security
against active attacks can even be achieved when the key shared
by the legitimate partners is highly insecure (e.g., in terms of
Rényi entropy). A challenge–response scheme is described that
can successfully be attacked only by an adversary having almost
complete knowledge about the secret key. This method is used
as the final step in both the Protocols UH (Section II-D) and
EX (Section III-C). The purpose of this step is to prevent the
party sending the final message that is needed for successful se-
cret-key agreement from accepting although key agreement has
failed. In Section III-A, a related result is proved that shows how
the same scheme can be used for authenticating short messages.

Lemma 3: Let and be integers such thatdivides and
holds, and let be a random variable with range

GF . Let further for any GF the function
be defined as

where GF is a representation
of GF with respect to a fixed basis of GF over
GF , where the computations are carried out in the field
GF , and where the elements of GF are represented as
-bit strings with respect to a fixed basis of GF over GF .

Assume that for GF , the value can be guessed
correctly (with some strategy) with probability ,
taken over the distribution of , the choice of , and the coin
tosses of the guessing strategy. Then

(5)

or, equivalently

Proof: First, we can assume without loss of generality that
the strategy of guessing is deterministic, since for every



844 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 4, APRIL 2003

possible strategy there exists a deterministic strategy that is at
least as good (since every randomized strategy can be seen as
a combination of deterministic strategies, of which the optimal
one can be chosen).

We give a lower bound on the probabilitythat for randomly
and independently chosen distinct arguments of
GF , all the values are guessed correctly. Let be
the function

if and otherwise. Let, for every
, denote the number of distinct GF for

which is guessed correctly by the (deterministic) guessing
strategy. Then, we have

(Here, we have made use of Jensen’s inequality. Note thatis
a convex function.) Thus, there exist distinct
such that the values are simultaneously guessed correctly
with probability at least , taken over .

On the other hand, is uniquely determined by the correct
values , . In order to see this, note first
that

...
...

...
...

...

and second, that the determinant of the matrix, calledVander-
monde determinant, is equal to

hence, the matrix is invertible, and
is uniquely determined by the ’s. An alternative way to
see this fact is by interpreting as a polynomial of
degree at most over GF , which is uniquely deter-
mined, thus, also is, by its evaluation at distinct points

. Hence, there must be an element with

Because of , we can conclude that (5)
holds.

C. Privacy Amplification by Universal Hashing

Assume that Alice and Bob share an-bit string about
which an eavesdropper Eve has incomplete information charac-
terized by a probability distribution over the -bit strings,
and that Alice and Bob have some knowledge of this distribu-
tion , but that they do not know exactly in which way the
secrecy of their string is compromised. Using the public-dis-
cussion channel they wish to agree on a function

(for some suitable ) such that Eve, despite her par-
tial knowledge about and complete knowledge of, almost
certainly knows nearly nothing about . This process trans-
forms a partially secret -bit string into a highly secret but
shorter -bit string .

The two natural questions in this context are what a good tech-
nique is for computing the compressed from the initial string,
and how long the virtually secret string can be, depending on
this technique and on . Bennett, Brassard, and Robert [2]
considered the case where Eve receivesdeterministicinforma-
tion, i.e., where the key is, from Eve’s point of view, uniformly
distributed over a subset of the set of all possible keys. They used
universal hashing as the technique for compressing the string.

Definition 3 [5]: A class of functions is
universal (“universal” for short) if, for any distinct and
in , the probability that holds is at most
when is chosen at random from according to the uniform
distribution.

The following is an example of a universal class of functions
from to , for , with elements [1].

Example 1: Let be an element of GF , and interpret
as an element of GF with respect to a fixed

basis of the extension field over the prime field GF. Consider
the function assigning to an argument

the first bits (with respect to this basis representation) of
the element of GF , i.e.,

The class

GF

is a universal class of functions for .

The results of [2] were generalized by Bennett, Brassard, Cré-
peau, and Maurer [1] to scenarios in which Eve’s information
about is not deterministic, but where the probability distri-
bution satisfies a constraint in terms of Rényi entropy. The
main result of [1] is the following theorem (see also Fig. 2).

Theorem 4 [1]: Let be a probability distribution over
with Rényi entropy , and let be the random variable
corresponding to the random choice, with respect to the uniform
distribution, of an element of a universal class of functions map-
ping to . Then

Theorem 4 states that if Alice and Bob share a particular
string and Eve’s information about corresponds to the dis-
tribution (where denotes the particular value of her in-
formation ) about which Alice and Bob know nothing except
a lower bound on the Rényi entropy, i.e., ,
then Alice and Bob can generate a secret keyof roughly
bits. More precisely, if Alice and Bob compressslightly more
to an -bit key for some security parameter , then
Eve’s total information about this key is exponentially small
in .
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Fig. 2. Universal hashing allows to extract Rényi entropy.

Fig. 3. Analysis of Protocol UH.

A problem that naturally arises when combining information
reconciliation and privacy amplification with universal hashing
is to determine the effect of the error-correction information
(leaked also to the adversary) on the Rényi entropy of the par-
tially secret string, given Eve’s information. The following re-
sult, which was shown by Cachin [3] as an improvement of
an earlier result by Cachin and Maurer [4], states that leaking

physical bits of arbitrary side information about a random
variable cannot reduce its Rényi entropy by substantially more
than except with exponentially small probability. Note that the
statement of Lemma 4 is a special case (namely, if ) of
the first statement of Lemma 2.

Lemma 4 [3]: Let and be random variables, and let
. Then with probability at least (taken over
), we have

Theorem 5 states that Protocol UH allows for privacy amplifi-
cation secure against active adversaries whenever the Rényi en-
tropy, from Eve’s point of view, of is greater than two thirds
of the length of . Moreover, the length of the resulting secret
key can be roughly equal to the excess, i.e., to

(see Fig. 3).

D. Protocol UH

We are now ready to give a first protocol for privacy am-
plification secure against active adversaries. The ingredients of
this protocol are universal hashing (for privacy amplification),

strongly universal hashing (for the authentication of the mes-
sage, i.e., the random bits determining the hash function), and
the challenge–response scheme of Section II-B.

For parameters and , where divides and divides ,
Protocol UH is defined as follows. (Here, as well as in Protocol
EX, the states are the default states, and are valid initially
and until “ ” appears in the protocol specification.)

GF

GF

if

otherwise

if

Here, , , and are -bit strings, whereas
are -bit strings. Recall that GF

means that is chosen randomly from GF according to
the uniform distribution. All the computations are carried out
in the fields GF and GF , respectively.

Theorem 5: Let , , , and be positive integers such that
divides , divides , and holds. Then
Protocol UH is a robust

-PA-protocol

for

Proof: Let be the particular value known to Eve.
We first assume that Eve is apassivewiretapper. Let

be the message sent from Alice to Bob, and let
be the event that

(6)
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holds. According to Lemma 2, the eventhas probability at
least . Let , and let

. Because of (6), Theorem 4 implies that

We have used that holds. We
conclude that

Let us now consider the case where Eve is anactiveattacker.
First, Lemma 1 implies that

Therefore, by Lemma 3, the probability of a successful active
attack of the message authentication with strongly universal
hashing is upper-bounded by

On the other hand, we have to give an upper bound on the
probability that Eve correctly guesses . As
above, we conclude first that

(7)

holds with probability at least . If (7) holds,
then by Lemma 3, the probability of correctly guessingis at
most

Hence, by the union bound, the success probability of an active
attack is upper-bounded by

Corollary 6 is an asymptotic version of Theorem 5 and fol-
lows directly from the latter.

Corollary 6: Let and be constants. Then
Protocol UH is, for sufficiently large and for an appropriate
choice of the parameters, a robust

-PA-protocol.

Note that the divisibility conditions required in Theorem 5
can be satisfied by appending a certain number of’s at the end
of the string. Then, Theorem 5 can be applied for an appropriate
choice of the parametersand , both of order , where

holds.

III. PROTOCOLEX BASED ON EXTRACTORS

One limitation of Protocol UH is due to the fact that the mes-
sage to be transmitted and authenticated, i.e., the description of
the function from the universal class, is as long as the string
that finally forms the input to the hashing. As described in Sec-
tion III-B, there exist, however, methods for privacy amplifi-
cation or, more generally, for “distribution uniformizing,” that
are more efficient than universal hashing with respect to the re-
quired amount of random (message) bits, namely, the so-called
extractors.

A. Message Authentication With a Partially Secret Key II:
Short Messages and the Power of Feedback

The use of extractors for privacy amplification will allow for
reducing the size of the message to be transmitted (and, hence,
authenticated) to a small constant fraction of the length of the
authentication key. In this case, a challenge–response authenti-
cation method, similar to the method described in Section II-B,
can be used: The message is not authenticated by the sender,
but reconfirmed by the receiver. Intuitively, the use of such an
authentication method puts the adversary, who must answer a
given challenge instead of authenticate an incorrect message
of her own choice, into a much less comfortable position.

Lemma 5 states that the interactive authentication method is
secure against an active attacker whose Rényi entropy exceeds
half the length of the authentication key. Note that the new au-
thentication method has an important advantage as compared
to strongly universal hashing in the context of authentication
with a partially secret key. When using the latter method, a cor-
rect message–authenticator pair reveals, roughly speaking, half
the information about the key (namely, a linear equation, two
of which are sufficient to determine the key). Hence, the key
is “used up” after one application. With the interactive method,
however, only an arbitrarily small constant fraction of informa-
tion about the key is gained by an opponent observing a mes-
sage (i.e., a challenge) together with its authenticator (i.e., the
response). This implies that the same key can be used for secure
authentication with a partially secret key many times.

Lemma 5: Let and be integers such that divides
and holds, and let be a random variable with range

GF . Let, further, for any GF the function
be defined as in Lemma 3. Assume

that there exists a (possibly probabilistic) function, mapping
GF to GF

such that holds for all , and such that given , the
value can, for GF , be guessed correctly (with
some strategy) with probability, taken over the distribution of

, the choice of , and the coin tosses of the guessing strategy.
Then

or, equivalently

holds.
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Proof: Note first that, by the same arguments as used in
the proof of Lemma 3, we can assume without loss of generality
that the function and the strategy of guessing from

are deterministic, and conclude that there exist distinct el-
ements of GF such that is guessed cor-
rectly from , where , for all
simultaneously with probability at least

Let be this event. We prove that .
By canceling of the pairs and renumbering

the remaining pairs, we can obtain pairs
with the property that holds for all

. (In the worst case, all the pairs occur
twice in different orderings. Then, every second pair
must be canceled.)

The event has the property that

for all . Otherwise, could not be guessed cor-
rectly from for all . Hence, must be contained in
a set of the form

and

for some function . Analogously, must also be contained
in sets , , of the same form (with and
replaced by and , respectively), hence

(8)

We show that the cardinality of the set on the right-hand side of
(8) is . First, observe that every set of at most
functions is, for pairwise distinct GF , linearly
independent over GF (the Vandermonde determinant is
nonzero in this case, as shown in the proof of Lemma 3). We
define

From the linear independence of , we first conclude
that . Furthermore, the linear independence of
from the set

(because according to the
choice of the pairs ) implies

for . Note that this also holds if
or for some . We conclude that

On the other hand,

holds. In the case where restricted to is the uniform distri-
bution (this case maximizes the Rényi entropy) with probability

or greater, we have

and the claim follows when the negative logarithm is computed
on both sides.

B. Privacy Amplification with Extractors

For constructing a protocol allowing privacy amplification
with shorter messages, we use a different technique for privacy
amplification, based onextractors.

Roughly speaking, an extractor allows for efficiently isolating
the randomness of some source into virtually random bits, using
a small additional number of random bits as a catalyst, i.e., in
such a way that these bits reappear as a part of the almost uni-
formly distributed output. Extractors are of great importance
in theoretical computer science, where randomness is often re-
garded as a resource. They have been studied intensively in the
past years by many authors. For an introduction to the subject
and some constructions, see, for example, [17] or [18], and the
references therein.

Recent results, described in the following, show that such
functions allow, using only a small amount of true randomness,
to distill (almost) the entire randomness, measured in terms of

, of some string into an almost uniformly distributed string.
A disadvantage of using extractors instead of universal hashing
is that a string of length only roughly equal to themin-entropy
instead of the generally greaterRényientropy of the original
random variable can be extracted. However, this drawback has
no effect in connection with typical sequences, i.e., almost uni-
form distributions. (Note that for uniform distributions, all the
introduced entropy measures are equal.)

Definition 4: A function
is called a -extractor if for any distribution on
with min-entropy , the variational distance3 of
the distribution of

to the uniform distribution over is at most when
choosing according to and independently according to
the uniform distribution over .

The following theorem was proved in [18]. It states that there
exist extractors which distill virtually all the min-entropy out
of a weakly random source, thereby requiring only a small (i.e.,

3The variational distanceof two distributionsP andP over the same
rangeX is defined as( jP (x)� P (x)j)=2.
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Fig. 4. Privacy amplification with extractors.

“poly-logarithmic”) number of truly random bits. Note that The-
orem 7 is formally slightly stronger than the corresponding the-
orem in [18] because it not only states that the length of the ex-
tractor output is roughly equal to the min-entropy of the source
plus the number of random bits, but even that these bits reappear
as a part of the output. Although it has not been explicitly stated,
it is not difficult to see that the extractors described in [18] do
have this property.

Theorem 7 [18]: For every choice of the parameters,
, and , there exists a -extractor

where .

Corollary 8, which is a consequence of Theorem 7, is what we
need for the analysis of Protocol EX. The statement of Corollary
8 is related to Theorem 4, where universal hashing is replaced
by extractors, and min-entropy must be used instead of Rényi
entropy (see Fig. 4).

Corollary 8: Let be constants. Then there
exists, for all sufficiently large , a function

where and , such that for all random
variables with and

we have

(9)

Lemma 6: Let be a random variable with range
. Then

(10)

holds, where stands for the uniform distribution over
.

Proof: Let . We can assume that
holds because otherwise the inequality is trivially satisfied.

The distribution of can be thought of as obtained from the
uniform distribution by increasing some of the probabilities

(by total amount ) and decreasing some others (by the same
total amount). The function

is monotonically decreasing, hence increasing (or decreasing)
a smallerprobability increases (or decreases, respectively) the
entropy more than modifying a greater probability by the same
amount. Hence, a distribution with distancefrom with min-
imal entropy can be obtained by addingto one of the proba-
bilities, and by reducing as many probabilities as possible to,
leaving the other probabilities unchanged. One of the probabil-
ities of the new distribution equals , probabilities
are equal to , one probability equals (if this
is not ), and probabilities are unchanged and
hence equal to . Thus, the entropy of the new random vari-
able can be bounded from below by

Proof of Corollary 8: Let . Then
there exists such that for all we have a -ex-
tractor , mapping to , where
(note that holds for this choice of ), and

. By definition, this means that for a uniformly
distributed -bit string and if , the distance
of the distribution of to the uniform distribution

over is at most . Because

holds for uniformly distributed , the distance of the distribu-
tion of to the uniform distribution (over ) is
at most with probability at least over , i.e.,

Inequality (9) now follows from Lemma 6.

In analogy to Lemma 4, which gives an upper bound on the
effect of side information on the Rényi entropy of a random
variable (hereby linking information reconciliation and privacy
amplification with universal hashing) we now need such a re-
sult with respect to min-entropy . Lemma 7 is an immediate
consequence of Lemma 2.

Lemma 7: Let and be random variables, and let .
Then with probability at least (taken over ), we
have

C. Protocol EX

In this section we present Protocol EX for privacy amplifi-
cation secure against active adversaries. This protocol uses an
extractor function for privacy amplification and the interactive
challenge–response authentication methods. One important dif-
ference to Protocol UH is that a shorter string is used as the au-
thentication key. This allows for extracting a significantly longer
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Fig. 5. Analysis of Protocol EX.

string in the case where Eve’s information about the original
string is small.

Let the binary string (of length ) be composed by strings
and of lengths and , respectively. Assume that

divides and let . The substrings ,
, of are all of length . The function is an extractor to be

specified later.

GF

GF

if

if

if

if

Theorem 9 implies that Protocol EX can be much more effi-
cient than Protocol UH, in particular for strings with a high level
of initial security. Note first that Protocol EX works under the
same condition as Protocol UH: the Rényi entropy of the string,
given Eve’s knowledge, must be larger than two thirds of the
length of the string. The length of the extractable key, however,
can be equal to roughly

instead of only the excess as for Protocol
UH. This expression can be substantially greater, in particular
if is close to . On the other hand, since
can be smaller (by a factor up to) than , Protocol EX
can also belesseffective than Protocol UH. An illustration of
the statement of Theorem 9 is given in Fig. 5.

Theorem 9: Let and be con-
stants. Then Protocol EX is, for sufficiently largeand for an
appropriate choice of the parameters, a robust

-PA-pro-
tocol.

Proof: Let , , and
let be the particular value known to Eve. We can assume
without loss of generality that and are integers and that

divides . (Otherwise, and can both be chosen smaller,
subject to and , respectively,
such that the conditions are satisfied.) Let nowbe the first
and be the remaining bits of .

Assume first that Eve ispassive. We give a lower bound on
the min-entropy of the string from Eve’s point of view and
given the entire communication held over the public channel.
Since this communication is, given and , independent
of , we have

(11)

with probability . (Note that Alice and Bob could
publish at the end of the protocol, only helping a possible
adversary.)

Let now be the extractor function according to Corollary 8
with

and

For the choice and (where
is composed by the firstbits of in a fixed representation),

we obtain, using (11) and

We consider the case where Eve is anactiveadversary and
give an upper bound on the probability of the event that Alice
and Bob do not both reject and secret-key agreement has never-
theless not been successful. It is obvious that this can only occur
if Eve can either guess from some (where )
or guess correctly, where and are randomly chosen.
The success probabilityof such an active attack is of order

(12)

To see this, note first that

holds because of Lemma 1 and by the definitions ofand
. Then, the probabilities of the events that is guessed

correctly from (note that ), that

holds (we call this event), and that is guessed correctly,
given that does not occur, are all of order , because of
Lemmas 5, 2, and 3, respectively. The bound (12) then follows
from the union bound.
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Remark: Note that for the proof of Theorem 9, the following
combination of the Protocols UH and EX is also sufficient. The
key is partitioned as in Protocol EX, but the authentication tech-
niques of Protocol UH are used for the shorter key, i.e., strongly
universal hashing and challenge–response confirmation (Sec-
tion II-B). However, Protocol EX has an important advantage
as compared to this protocol, and to Protocol UH, which is not
stated explicitly in Theorem 9. In case of failure because of a de-
tected active substitution attack, Protocol EX can (with roughly
the same parameters) be restarted again and again (times)
with the same key until secret-key agreement eventually suc-
ceeds. The reason for the possibility of such multiple trials is
that the observation of a correctly authenticated message re-
veals—unlike in the case of authentication with strongly uni-
versal hashing—only a small fraction of the total information
about the authentication key (see Section III-A).

IV. DISCUSSION

We have described two protocols, Protocol UH and Protocol
EX, for privacy amplification secure in the active-adversary
model. Protocol UH is based on universal hashing and is
successful as soon as the Rényi entropy of the partially secret
key, from the adversary’s viewpoint, exceeds two thirds of
the length of the string. Then the protocol distills a string
whose length is roughly equal to this excess. Protocol UH is
computationally extremely simple and works for strings of any
length. For sufficiently long strings, Protocol EX, based on
extractor functions, can be used. The condition on the initial
key is the same as for Protocol UH, but the extracted highly
secret key is often longer. An additional advantage of Protocol
EX is that failed privacy–amplification attempts do (almost)
not use up the key: the procedure can be repeated many times
with the same key.

In Fig. 6, the required conditions on the partially secret key
as well as the possible length of the resulting secret key when
using either Protocol UH or EX are illustrated and compared to
the corresponding quantities in the case of privacy amplification
(according to [1]) in the passive-adversary case. This represen-
tation, therefore, shows the price that must be paid for authenti-
cation in the context of privacy amplification.

V. CONCLUDING REMARKS

In the general setting of secret-key agreement from correlated
randomness by completely insecure communication, we have
analyzed the important special case of privacy amplification.
Different problems arise here as compared to the independent-
realizations model considered in [15]. Examples are the need
for authentication with a partially secret key or hashing with an
only small amount of joint randomness.

Our results are based on the combination of new message-au-
thentication methods—that require interaction but only a pos-
sibly highly insecure key, and that can be used repeatedly with
the same key—and a new technique for privacy amplification.

In analogy to the scenario where a random experiment is re-
peated many times [15], we found that privacy amplification
secure against active adversaries is achievable, but only under

Fig. 6. Privacy amplification secure against active adversaries.

certain conditions stronger than the ones for the passive-ad-
versary case. For privacy amplification, however, we have not
shown these conditions to be necessary, and we state as an open
problem to prove or disprove their necessity.

In contrast to the independent-repetitions scenario, a certain
price has to be paid for the channel’s missing authenticity even
if robust privacy amplification is possible in principle: the gen-
erated key is shorter. It is a challenging open problem to find
protocols extracting the same amount of secrecy in the presence
of active adversaries as is possible against only passive wiretap-
pers (or to prove that such protocols cannot exist).
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