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Secret-Key Agreement Over Unauthenticated Public
Channels—Part IlI: Privacy Amplification

Ueli Maurer, Fellow, IEEE,and Stefan Wolf

Abstract—This is the third part of a three-part paper on se- information aboutS. From Eve’s point of view, the length o
cret-key agreement secure againstactive adversaries. Here, we concan in this case be roughly equal to Rényi entropyf S.

sider the spv_scial case W_here the legitimate partners already share In this paper, we investigate the same problem under the as-
a mutual string which might, however, be partially known to the . ! S ;
adversary. The problem of generating a secret key in this case has SUmption that the communication between Alice and Batois
been well studied in the passive-adversary model—for instance, in authenticated. Note that, in contrast to the model where many
the context of quantum key agreement—under the name gfrivacy  independent repetitions of the involved random variables are
a_lmplification. We consider the same problem with respect to anac- given [15], the same piece of informatishmust be used here
tive adversary and propose wo protocols, one based on universal both for authentication and as the input for privacy amplifica-
hashing and one based on extractors, allowing for privacy ampli- * OO ] T
fication secure against an adversary whose knowledge about the tion. Two problems that arise in this context are authentication
initial partially secret string is limited to one third of the length  with an only partially secret key, and the fact that this authenti-
of this string. Our results are based on novel techniques for au- cation leaks information about, hence potentially also about
thentication secure even against adversaries knowing a substantial S', to the adversary. We show that for our purpose, a new, inter-
amount of the “secret” key. . L . .
active, authentication method is better than one-way authentica-

Index Terms—Authentication, cryptography, privacy amplifica- tion by strongly universal hashing, and that so-catielactors
tion, quantum key agreement, secret-key agreement, unconditional requiring fewer random bits (i.e., shorter messages to be com-
security. municated), are a better technique for privacy amplification than

universal hashing.
I. MOTIVATION, DEFINITION, AND PRELIMINARIES The outline of this paper is as follows. In Section I-B, we de-
fine the notion of a protocol for privacy amplification by com-
_ pletely insecure communication. This is a modified version of
A SPECIAL case of the general key agreement scenario e protocol definition for the scenario of independent realiza-
fined in [15] is the situation where the parties Alice angjgns as given in [15]. In Section I-C, we show some impos-

Bob already share a string = Y = S, about which, however, gjpjjity results. Section I-D analyzes, as a preparation, the ef-
the adversary has possibly substantial information. The problegat of side information on certain important entropy measures,
of transforming this partially secret string into a virtually secré{nd connects the entropy of strings and parts thereof. Then, we
key 5’ is calledprivacy amplification it is the final phase of nresent two different protocols for privacy amplification secure
many key-agreement protocols. o against active adversaries. Protocol UH (Section Il) is based on

Privacy amplification was first described in the context gfiniversal hashing, whereas Protocol EX (Section IIl) uses ex-
quantum key agreement by Bennettal. [2], where universal tractors for transforming to S’. It is shown in Section V that
hashing was shown to be a good technique in the case wheredhgn of these protocols can be better than the other in certain
adversary possessdsterministicinformation aboutS. More  sjtyations. The used techniques for authentication and identifi-
precisely, it was shown that the kéy must be shorter thafi,  cation are introduced in Sections II-A, 1I-B, and IlI-A.
and thatlen(S) — len(S”) must be equal to the amount of in-
formation the adversary has abditplus a security parameter.
This result was generalized by Benneital.[1] to probabilistic  B. Protocol Definition

A. Protocol Definition

The protocol definition for privacy amplification secure
against active adversaries can be strengthened in two respects
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of 1 Rényi entropy or min-entropy. We denote, for evegnd S 7
a=20ra = o0, byD, . the subse{Px|H,(X) > t} of - o Information
distributions ovem-bit strings. / ' \ about the String

Definition 1: Assume that Alice and Bob both know arbit S\ EE22 Se [%

random variable5, and that the random variablesummarizes

Eve’s entire knowledge aboit Let D be a subset of all proba- Fig- 1. Information about partial strings.

bility distributions on the set at-bit strings, let- be an integer,

and lete, § > 0. An (n, D, r, ¢, §)-protocol for privacy am- Which minimizes the cardinality of the set
plification by communication over an insecure and unauthenti- -1 "

cated channdlarobust(n, D, r, e, §)-PA-protocoffor short) is F7(A) = {s € {0, 1}": f(s) € A}
a key-agreement protocol, as defined in [15], with the followinghen

properties.
1) Correctness and Privaci.et Eve be a passive wiretapper If YA <27 (211 —27°) + 2)
receiving a particular valug = z satisfying Ps|z—. € D. =2"(1—27°427"h,

Then, both Alice and Bob must accept at the end of the protocol,

and there must exist anbit string S’ such thats’ = 5/, = S}, Hence, forB := {0, 1}" \ f~*(A) we have

andH(S'|C, Z = z) > r — € hold, whereC is the protocol nee i1

communication. In this case, we say that privacy amplification |B| 2 2"7(1 — 2 )-

has beersuccessful Let Ps)z—. be the uniform distribution o C {0, 1}". Then
2) Robustness.et Psz—. € D. For every possible strategy\ye have

of Eve, the probability that eithdsoth Alice and Bob reject

the outcome of the protocol, or privacy amplification has been H,(S|Z = z) = log|B|
successful, must be at ledst 6. >n—e+log(l — 25—r+1)
>t

C. Impossibility Results

Clearly, the impossibility results of [15] immediately carryand .
over to privacy amplification secure against active opponents H(f(5)|Z =72) <log(2" = |A|]) <7 —¢

(v_vhere the nonS|mu|at§:1b|I|ty pondltlon IS fqu|IIe_d in all non-by construction and by the assumption. This contradicts the pro-
trivial cases). There exists neither a protocol with perfect sy col definition, hence, at least one message must be sent in the
chronization of the accepting states (i.e., both accept or b ' '

L o I.Ther f the argument i in [15, proofs of Theo-
reject in every case), nor a one-way-transmission protocol s Fntg%Oand g] estofthe argumentis as in [15, proofs o 0 €0
isfying the required properties. '

Theorem 1:Leta = 2 or @ = co. Assume that a robust - The Effect of Side Information and Knowledge About
(n, Dy a.¢. T, €, 6)-PA-protocol either with perfect synchro-Partial Strings

nization or using only one-way transmission exists. Then, eitherIn this subsection, we provide some facts necessary for the
e>r—1,0re >n—t+log(l—2""*1), ors = 1 holds. analysis of Protocols UH and EX for privacy amplification de-

Proof: Assume scribed later. We derive bounds on the amount of knowledge
R (e.g., of an adversary) in terms of Rényi entropy and min-en-
e<r—1 and e<mn—t+log(l-2 )- tropy about a partial string, depending on the amount of know!-

edge about the entire string. This is done both for the cases

We show that there exists, for every fixed functior{0, 1}" — where the adversary does (Corollary 2) or does not (Lemma 1)

{0, 1.} (_on whph A.I|ce- and Bob could agree without any COM3btain information about the remaining part of the string. In both
munication) a distributiol’s| ,—. € D such that

cases, the resultis roughly the intuitive fact that (with high prob-

H(f(S)|Z=2) <7 —e. ability) one cannot know (substantially) more about a part than
about the whole (see Fig. 1). In the case where the adversary
Let. A C {0, 1}" be the particular set of size obtains information about the remaining part of the string, the
result follows from a general upper bound on the reduction of
2N — 2" +1 Rényi entropy and min-entropy of a random variable when side

information is given (Lemma 2).
1For a random variablé” with rangeX’ and distributionPx , the Rényi en- 9 ( )

tropy H»(.X) is defined as Lemma 1:Let S = (S1, Ss, ..., S,) be a random vari-
5 able consisting of. binary random variables. For amytuple
Hy(X) := -1 P\’ r )" . . . . . . . . .
2(X) Og<m;, (1)> 12(11,22...7lk)W|th1§’61<12<"'<’Lk§n,|et5’£be
The min-entropyH .. (X) is the string(S;,, Si,, ..., Si,). Then
Heo(X) 1= ~logmax Py (). Ho(Sy) 2 Ha(S) — (n — k)

All logarithms here and in the rest of the paper are binary, unless stated other-
wise. holds fora = 2 anda = oc.
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Proof: Let first « = 2. Consider a fixed string (and a uniform distribution for the remainimgbit strings), i.e.,
(Siys .-, 84, ). This particular value of the random vari-H..(S) = n — v. Then
ableS; corresponds to exactly*—* values(s;, s, ) Of the
random variableS. Let p;, ..., py.—r be (the probab)lhtles of Hoo(S1) = Hoo(Sr) = /2 = v = Hoo(S) = /2.
these strings, and le := Zf;‘ pi. Now we have Intuitively speaking, Eve’s information abo#itin terms of min-
entropy appears entirely in both substrifgsndsS,., a fact that
n k(2 might contradict one’s intuition.
log Z(&) log( [ D | | "
“~ \po Lemma 2 gives an upper bound on the reduction of the Reny|
entropy and min-entrop¥,(P) and H.(P) of a random vari-
>E [log <p_>] able P when side informatioriQ), R] (consisting of a pair of
D random variables) is given, wheféP; R) = 0. It states that
_ g [log < o)} this reduction exceedsg | Q| (whereQ is the range of)) sub-
P stantially only with small probability in both cases. (Note that it

Do is not a trivial fact that no additional reduction is inducedby
> —log <E [ED if I(P; R) = 0. Forinstance](P; Q) = 0 andI(P; R) =0
o tﬁgether dclnotimply thatbr?(P|Q =q, R=7r)= Hy(P),as
— _log Z Pi Po the example” = @ @ R shows.)
i=1 Po Pi Lemma 2:Let P, @, and R be random variables with
= —log(2"~*) I(P; R) =0.Then
=k —n. Por[H2(P|Q = q, R =1) > Hy(P) —log |Q] — 5]
1 9—(s/2-1)

Here, the expectation is with respect to the probability distribu-

tion p; /po over the2"~* strings. We have made double use ofor all s > 2, and

the fact that the logarithm is a concave function and of Jense@s rIHo(P|Q=q, R=7)>H.(P) —log|Q| — s]>1—-2"*
inequality. We conclude that

for s > 0.
2n " Proof: We first prove the statement concerning Rényi en-
Z pi > 2n k (1) tropy. The argument is a generalization of [3, proof of The-

orem 4.17]. Letr € R be fixed. It is straightforward that

Because inequality (1) holds for every particular string o-H:(PQ|R=r) =Eq [glongR:r—He(P\Q%R=r)}_

(Siys ---, 8i ), We have for the collision probabilitiesP. of
the random variable$ and.s; Hence the probability thdbg Po|r—. — H>(P|Q = ¢, R =)
exceeds- Hy(PQ|R = r) by more thans/2 is at most2—*/2,
Pe(Si)= Y Psi((sis-es ) e,
(0,1 PolHy(PIQ =q, R=r)
< gn—k Z PS((sh ) sn))2 < HQ(PQ|R = 7") + 10gPQ|R:r — 8/2] < 27/2,
to. Furthermore
—on—k. Pc(S)

Pg [log Pojr=r < —log|Q| — s/2] < 27/2.
These inequalities together imply

Hs(S;) > H2(S) — (n — k). Po[Ha(PIQ =¢q, R=1)

—7r)— — —(s/2=1)
For the case: = oo, the inequality follows directly from the < Hp(PQIR = 1) —log|Q] — 5] < 2 ‘
fact that the maximal probability offecbit string is at mose™~*  Finally, Ho(PQ|R = r) > Ho(P|R = r) = Ho(P) holds

Hence,

times the maximal probability of a string 1. 0 because of

Remark: Note that when the string is split into two parts > Proia=(p, 9)?
S; andS,., then the bounds of Lemma 1 appliedScandsS,. are peP,qeQ
tight simultaneouslyFor example, letv = oo ands = (si, ;)
be a particulan-bit string (wheren is even), and le¢; ands,. be = Z PP\R:r(p)Z . Z Poip, r=r(4; p)?
the first and second halves afDefine (for some) < n/2 — 1) peP 7€0
Ps((s;,8)) = Ps((s, s := 2V~ for all n/2-bit stringss

((s1,9)) ((5, sr)) / <Y Prines

2For a random variablé& with range.X’, the collision probability Pc (X)) peEP
is the probability of getting the same outcome twice in two independent re-
alizations, i.e.Pc(X) = erx Px (x)?. The Rényi entropy ofX is then = Z Pp

Hy(X) = —log(Pc(X)). pEP
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We have used for the last equality tHfatand R are statistically =~ There exists a variety of possibility and impossibility results
independent, i.e., thdtp r—, = Pp. We conclude that on information-theoretically secure authentication (see, for ex-
ample, [20], [11], or [21]). The following two types of attacks
PolHx(P|Q = ¢, R=1) < Hy(P) ~log|Q| ~ are possible. In aimpersonation attackhe opponent tries to
generate a (correctly authenticated) message, andsirbsti-

holds for allr € R, and the first statement of the IemmafollowsFUtIon attack the adversary observes a correctly authenticated

Let us address the second statement. fget= 27°/|Q)|. t'n::ea‘:‘zggnieasnsi tr;eﬁ_:; rsepéigzslt ?gbzg!ﬁeézrgrgoégi?y;mhen'
Then we have for all € R ! ge. u p liti ted.by

andps.,, respectively. (General lower bounds on these proba-
Poir=r[{a: Poir=r < po}] <27° bilities are g_iv_e_n in [11].)_ o _ _
One possibility for realizing information-theoretically secure
authentication is by using strongly universal classes of hash

Por [{(a,7) € Q x R: Pyr(a, r) <po}] < 27°. functions (see, for example, [21]).

Definition 2: A classH of (hash) functionsA — B is called
strongly universa(or SU, for short) if for all distincta;, as €

s]
< 9-(s/2-1)

and hence

This inequality implies that

Prion(p, ¢, 1) = Ppqr(p, q,7) A and for allby, b, € B, the number of functiongd € H for
IQRAE, & Pqr(g, 7) which bothA(a1) = by andh(az) = by hold is|H]/|BJ2.
_ Pr(p) Pr(r) - Poipr(4, p, 1) Remark: Note that a strongly universal class has in particular
Pr(r) - Poir(q r) the following property. For every € A andb € B, the number
< Pp(p) of functionsh € ‘H such thati(a) = b holds is|H|/|B|. This is
~ Pgr(q,r) true because for all, a’ € A, a’ # a, andb € B, we have
< PP(p) / /
= [{h € H: h(a) =b}| = | | {h € H: h(a) = b, h(a') = V'}
=Pp(p)-|Q|-2° breB / /
= h :h(a)=10, h =b
holds with probability greater thah— 2—* (taken overQ and bze;s [{h € : ha) » (@) H
R). The statement follows by maximizing over alle P, and H A
by taking negative logarithms. O =Bl 5 = —

B]> 18|

Corollary 2 is a direct consequence of Lemma 2. It statesBy roughly the same argument one can also show that a
that a formally slightly weaker result than that of Lemma l4qngly universal class is in particular universal (see Defini-
concerning the knowledge (in terms &f; and of Hoo) of @  ion 3). a fact that is suggested by the names of the properties.
partial string, even holds when the rest of the string is maden sirongly universal class of hash functions can immediately
public. be used for authentication: the secret key determines a hash

Corollary 2: Let S be ann-bit string, and let a partition of function of the class, and the message is authenticated by its
into two stringsS’” andS” of lengths andn —, respectively, be hash value. The authentication code corresponding to an SU
given. Lets > 2 be a security parameter. Then the probabilitglass of hash functions satisfies

taken overs”, that Pimp = 1/|B|
Hy(S'8" = 8") > Hy(S) — (n—1) — s (because of the property mentioned in the above remark) and
holds is at least — 2-(/2=1)_ Furthermore, fors > 0, the Peub = 1/|B]

il "
probability, taken oves”, that (which follows directly from the definition). An SkJ class

Hyo(S'8" =5§") > Ho(S)— (n—1)—s of functions mappingV-bit strings to N-bit strings can be
constructed similarly to the universal class described in [15].

holds is at least — 275. Namely, the class

[l. PROTOCOLUH BASED ON UNIVERSAL HASHING H = {ha: (a, b) € (GF(2V))*} 2

A. Message Authentication With a Partially Secret Key I: ~ Where

Strongly Universal Hashing hap() 1= a5 + b
All previous results on unconditionally secure authentication

require a key that is completely secret, i.e., its probability digs an SU class of hash function®, 1}~ — {0, 1}V with 22V

tribution is uniform from the opponent’s point of view. In thiselements, i.e., with a ke§ = «a||b of length2N.

subsection, we prove a result on authentication where the oppoket us now investigate the scenario in which the key is not en-

nent is allowed to have some partial information about the kdirely secret, i.e., where the opponent Eve has a certain amount

These techniques are used in the protocols described in the &flinformation about this key. The following result states that in-

lowing sections. formation-theoretically secure authentication is possible under
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the condition that the Rényi entropy of the key from the adver- Remark: It has been proposed to use smaller but “weaker”
sary’s viewpoint is greater than half the length of the key.  classes of functions, so-callegtalmost strongly universal
Theorem 3: Let S be a binary string of (even) length As- (e-ASU) hagh f_unct|ons, instead of strongly universal hasr_nng
. : . for authentication [21]. Such classes allow for authentica-
sume thatS is used by two parties as the key in the authent)-

cation scheme based on strongly universal hashing with resp'e%? with a substantially smaller secret key at the price of a

t0 the class (2), that an adversary knows a random varlﬂblesomeWhat greater success probability of a substitution attack.

jointly distributed with.S according to some probability distri- However, for the purpose of authe_ntlcauon withpartially
. . . s%cret key, these classes of functions do not lead to better
bution, and that the opponent has no further information abou - .
S Let results. Whenever the Rényi entropy of the partially secrgt_ key
' is smaller than half the length of the key, then no uncondition-
Hy(S|Z=2)>(1/24+ R)-N ally secure authentication is possible with this key by using
N (e-A)SU hashing because one correct message—authenticator
for a particularz in the rangeZ of Z. Then, the probabilities of pair can reveal the remaining information necessary to uniquely
successful impersonation and substitution attacks, dgivenz, determine the key.

are upper-bounded by

iy < 2-BN/2 B. Challenge-Response Identification With a Highly Insecure
imp > Key
and
In the preceding subsection, we have shown that message au-
Psub S 3- 2_RN/4 (3) ’ J 9

thentication is possible with a partially secret key, or more pre-
respectively. cisely, with a key the Rényi entropy of which (from the adver-
sary’s point of view) is more than half its length. In this subsec-
hﬁén, on the other hand, we prove that a certain type of security
against active attacks can even be achieved when the key shared
r’by the legitimate partners is highly insecure (e.g., in terms of
Rényi entropy). A challenge-response scheme is described that
Proof: First we prove the upper bound on the succesgn successfully be attacked only by an adversary having almost
probability p;n,,, Of the impersonation attack. For every poscomplete knowledge about the secret key. This method is used
sible messagen € GF(2"/2?) and for every authenticator as the final step in both the Protocols UH (Section 1I-D) and
y € GF(21V/?) there exist exactl¥/? possible keys such that EX (Section 11I-C). The purpose of this step is to prevent the
y is the correct authenticator far. The probability of such a party sending the final message that is needed for successful se-
set of keys, given thaf = z, can be upper-bounded as followscret-key agreement from accepting although key agreement has
In the worst case (i.e., the best case for the impersonatifaged. In Section llI-A, arelated result is proved that shows how
attacker) the2¥/? keys all have the same probability, say the same scheme can be used for authenticating short messages.
Thenp must satisfy

the message observed by Eve be independefi{lofit indepen-
dent ofS givenZ = z). For example, inequality (3) holds eve
when the message is selected by Eve herself.

Lemma 3: Let N and/ be integers such thadivides NV and
oN/2. p? < Pp(S) < 2~ (W/2HRN 2¢ > N/¢ holds, and letX’ be a random variable with range
K C GF(2N). Let further for anyd € GF(2¢) the function

€. fa: {0, 1}V = {0, 1}* be defined as
p < 2 W2HR/DN, N/je—1
Hence fa(@):= Y d'w;
) i=0
Pimp < 2N/ .27 (/24R/ON _ 9=RN/2 where(zo, ..., Tn/-1) € (GF(2)N/*is a representation

fz € GF(2V) with respect to a fixed basis of GE") over

F(2%), where the computations are carried out in the field
GF(2%), and where the elements of GE) are represented as
E-pit strings with respect to a fixed basis of GF) over GF(2).
Rssume that forl €r GF(2°), the valuef,(K) can be guessed

Let us now consider the substitution attack. The crucial
gument is that the keyis uniquely determined b, hs(m))
and(m/, hs(m')) if m # m’. Hence, the probability of a suc-
cessful substitution attack is not greater than the probability

guessings correctly when giver(M, hs(M)). From Lemma correctly (with some strategy) with probability > (N/¢)/2°,

2, and becaus&($; M|Z = z) = 0, we can conclude that taken over the distribution ok, the choice ofi, and the coin
Hy(S|M = m, hs(M) = hs(m), Z =2z) > RN/2 (4) tosses of the guessing strategy. Then

holds with probability at least — 2~(&N/4=1) On the other 2N N/t

e . . o Hy(K)<——-1 - — 5
hand, if inequality (4) holds, then the maximal probability of a 2(K) < ¢ OB\ T ©)
particular keys is at most or, equivalently

V2 Hz(SIM=m, hs(M)=h.(m), 7=2) < 9= RN/4, o < 2~ (/2N) Ha(K) N2_ﬁ£

Thus, we have, by the union bound Proof: First, we can assume without loss of generality that

Peup, < 27 BEN/A=1) | 9= RN/4 _ 3 9= RN/4, O the strategy of guessing (k) is deterministic, since for every
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possible strategy there exists a deterministic strategy that is{@at 1} (for some suitablé\/) such that Eve, despite her par-

least as good (since every randomized strategy can be seetigh&nowledge aboutv and complete knowledge @f almost

a combination of deterministic strategies, of which the optimakrtainly knows nearly nothing abogw). This process trans-

one can be chosen). forms a partially secrelN-bit stringw into a highly secret but
We give a lower bound on the probabilifithat for randomly shorterM-bit string g(w).

and independently chosen distinct arguments. . ., dy/, of The two natural questions in this context are what a good tech-

GF(2%), all the valuesf,, (k) are guessed correctly. Letz) be nique is for computing the compressed from the initial string,

the function and how long the virtually secret string can be, depending on

1 2 N/t -1 this technique and oi?y,. Bennett, Brassard, and Robert [2]

glw) = (‘E B 7) ’ (l h ?) <$ Y ) considered the case where Eve recete®rministicinforma-

if # > (N/¢ — 1)/2¢ andg(z) := 0 otherwise. Let, for every tipn,_i.e., where the key is, from Eve’s point (_)f view, uniformly

k € K, ny, denote the number of distinet € GF(2¢) for distributed over a subset of the set of all possible keys. They used

which f,(k) is guessed correctly by the (deterministic) guessidﬂ"i"ersal hashing as the technique for compressing the string.

strategy. Then, we have Definition 3 [5]: A classG of functionsg: A — B is
B =FEx [q (“_k)} universa} (“universal” for short) if, for any distinct; andz,
in A, the probability thay(z;1) = g(x2) holds is at most
2¢ in A, the probability th holds i B
>y (EK [n—k]) wheng is chosen at random from@ according to the uniform
2 o0 neng KX
N/ distribution.
N/t o . .
2 |la— T . The following is an example of a universal class of functions
N M < ; N
(Here, we have made use of Jensen’s inequality. Notegtieat from {0, 1} 10 {0, 1}, for M < N, with 2 elements [1].
a convex function.) Thus, there exisy/ distinctdy, ..., dyy. Example 1: Let a be an element of GR%), and interpret
such that the valueg;, (k) are simultaneously guessed correctly: € {0, 1}V as an element of GR%) with respect to a fixed
with probability at leasta — (N/¢)/2¢)N/¢, taken ovet:. basis of the extension field over the prime field @§. Consider
On the other hand is uniquely determined by the correctthe functionh,: {0, 1} — {0, 1} assigning to an argument
valuesfy, (k), k = 1, ..., N/L. In order to see this, note first z the first M bits (with respect to this basis representation) of
that the elementz of GF(2%V), i.e.,
fa, (k) @ d ! ko ha(z) := LSB(a - ).
fa, (k) FEI SRS A ky The class
: - ' {hala € GF(2M)}
dn e . . /= N/t—1 is a universal class of functions far< < N.
Fn e (K) e dly, dyjt) Nk | class of functions for< M < N
and second, that the determinant of the matrix, calladder-  The results of [2] were generalized by Bennett, Brassard, Cré-
monde determinants equal to peau, and Maurer [1] to scenarios in which Eve’s information
H (dj —d;) #0 aboutw is not deterministic, but where the probability distri-
1<i<j<NJ/t bution Py satisfies a constraint in terms of Rényi entropy. The
hence, the matrix is invertible, ad= (ko, k1, ..., ky/e_1) main result of [1] is the following theorem (see also Fig. 2).

is uniquely determined by thé;, (k)'s. An alternative way to  Theorem 4 [1]: Let Py be a probability distribution oven

see this fact is by interpreting;(z) as a polynomial’; (d) of  with Rényi entropyH, (W), and letG be the random variable
degree at mos¥// — 1 over GF(2‘), which is uniquely deter- corresponding to the random choice, with respect to the uniform
mined, thus, alsa is, by its evaluation afV// distinct points distribution, of an element of a universal class of functions map-

di, ..., dyse. Hence, there must be an elemeépte K with ping W to {0, 1}™. Then
N/ H(G(W)|G) > Hy(G(W)|G)
Py (ko) > <a — 7) . 9M—Hy(W)
>M — ——
Because ofPo(K) > Px(ko)?, we can conclude that (5) - In2
holds. O Theorem 4 states that if Alice and Bob share a particular
) o ) ) string S and Eve’s information abouf corresponds to the dis-
C. Privacy Amplification by Universal Hashing tribution Ps, . (wherez denotes the particular value of her in-

Assume that Alice and Bob share aftbit string w about formationZ) about which Alice and Bob know nothing except
which an eavesdropper Eve has incomplete information charadewer boundr on the Rényi entropy, i.eH»(S|7Z = z) > R,
terized by a probability distributiof?;;- over theN-bit strings, then Alice and Bob can generate a secret Kepf roughly R
and that Alice and Bob have some knowledge of this distribbits. More precisely, if Alice and Bob compreSslightly more
tion Py, but that they do not know exactly in which way theo an(R — s)-bit key for some security parameter> 0, then
secrecy of their string is compromised. Using the public-dig&ve’s total information about this key is exponentially small
cussion channel they wish to agree on a functiof0, 1} — in s.
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H, (S| U=u) strongly universal hashing (for the authentication of the mes-
sage, i.e., the random bits determining the hash function), and
the challenge-response scheme of Section II-B.

S For parameters and/, where3 dividesn and/ divides2n /3,
! Protocol UH is defined as follows. (Here, as well as in Protocol
Universal Hashin v EX, thereject states are the default states, and are valid initially
$ = G(S) & :<i>: and until “accept” appears in the protocol specification.)
, |  Eve’sInformation Protocol UH (Universal Hashing)
S Alice Bob
<2%/In2 S = Sil|Sul| St S = S1||Sul|Sur
H(S' | G, U=u) S1l|Sm = S1l|S =
SollSull -+ [|S2n/3e-1 SollS1ll -+ - 1S2n /301
Fig. 2. Universal hashing allows to extract Rényi entropy. L GF(Z /3)
€ER "
(2/3) len (S) . S’y :=LSB,.(h - St)
S —»E—s;‘ % a:=h-St+ S
: ! H U ER GF(Z[)

H_(S|Z= Co : \
2( o /:/t | Eves (h7 a, u)
: ) (b, a,u)
Protocol UH ! ' Information

. [:K accept if
2'9(5) a=h-St+ Su

stop otherwise

Fig. 3. Analysis of Protocol UH.
%, := LSB,.(h - St)

A problem that naturally arises when combining information v = fu(S51]|Sm)
reconciliation and privacy amplification with universal hashing v
is to determine the effect of the error-correction information .
(leaked also to the adversary) on the Rényi entropy of the paarScept i
tially secret string, given Eve’s information. The following re- v = fu(S1|S1)

sult, which was shown by Cachin [3] as an improvement of
an earlier result by Cachin and Maurer [4], states that Ieakitpg;re, Si, Sm, and Syp are (n/3)-bit strings, whereas
t physical bits of arbitrary side information about a randorgO’ ..., Siye_1 arel-bit strings. Recall that €5 GF(27/3)
variable cannot reduce its Rényi entropy by substantially mote. s that, is chosen randomly from GR"/3) according to
thant except with exponentially small probability. Note that thgne nitorm distribution. All the computations are carried out

statement of Lemma 4 is a special case (name|® [f= 1) of in the fields GR2"/3) and GR(2%), respectively.
the first statement of Lemma 2.

Theorem 5: Letn, t, £, ands be positive integers such that

Lemma 4 [3]: Let X and () be random variables, and |ety;iqesy, ¢ divides2n/3, andn > tn > 2n/3 + s holds. Then
s > 0. Then with probability at least — 2~(+/2=1) (taken over p.q1ocol UH is a robust

q € Q), we have
H2(X) _ HZ(X|Q — q) S 10%|Q| +s. (n, Dn,2,tn7 (t — 2/3)71 — S, €, 6) -PA-prOtOCOI

Theorem 5 states that Protocol UH allows for privacy amplifior
cation secure against active adversaries whenever the Rényi en- g 3
tro f E ’ H H H H e=r-2 (s/3 1)+2 S/3/11127
py, from Eve’s point of view, of5 is greater than two thirds
of the length ofS. Moreover, the length of the resulting secret § =27 W=2/3)n/2 4 3 9=(t=2/3)n/4
key S’ can be roughly equal to the excess, i.e., to 4 3. 9= (30/an)(1=3¢/2n)(t=2/3)n | 2_"@
Ha(S) = (2/3) - len(S) 32
Proof: Letz € Z be the particular value known to Eve.
We first assume that Eve ispassivewiretapper. Le{h, a) =
(h, h- St + St1) be the message sent from Alice to Bob, and let
D. Protocol UH & be the event that
We are now ready to give a first protocol for privacy am-
plification secure against active adversaries. The ingredients of/2(St|S1 = s1, Su = su, Z = z) 2 (t —2/3)n — 2s/3
this protocol are universal hashing (for privacy amplification), (6)

(see Fig. 3).
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holds. According to Lemma 2, the evefithas probability at [ll. PROTOCOLEX BASED ON EXTRACTORS
leastl — 2= /31 Letr := (t — 2/3)n — s, and letS’ :=

o One limitation of Protocol UH is due to the fact that the mes-
LSB,.(h - Si1). Because of (6), Theorem 4 implies that imitat IS au

sage to be transmitted and authenticated, i.e., the description of
H(S'|HA, €, 7 = z) > H(S'|HAS:Sm, &, Z = 2) the function from the universal class, is as long as the string
 H(S'\HS S £ 7 — t_hat finally forms th_e input to the hashing. As de_scnbed in S_gc-
= H(S'|H5151, €, Z = 2) tion I11-B, there exist, however, methods for privacy amplifi-
2~*/3 cation or, more generally, for “distribution uniformizing,” that
- In2 ° are more efficient than universal hashing with respect to the re-
We have used thalt(Sip; HA|SiSi, Z = z) = 0 holds. We quired amount of random (message) bits, namely, the so-called
conclude that extractors

2-s/3 A. Message Authentication With a Partially Secret Key Il
! f— - —
H(S'|HA, Z = z) 2 P[¢] <T n2 ) Short Messages and the Power of Feedback
S o= (s/3-1) 2-s/3 The use of extractors for privacy amplification will allow for
=r=r T In2 reducing the size of the message to be transmitted (and, hence,
=T —€. authenticated) to a small constant fraction of the length of the
authentication key. In this case, a challenge—response authenti-
cation method, similar to the method described in Section II-B,
can be used: The message is not authenticated by the sender,
but reconfirmed by the receiver. Intuitively, the use of such an
Hy(S1Su|lZ=2)>({t—-1/3)n=n/34+ (t —2/3)n. ’
2515l )z [3)n=n/3+( /3)m authentication method puts the adversary, who must answer a
Therefore, by Lemma 3, the probability of a successful acti@ven challenge instead of authenticate an incorrect message

attack of the message authentication with strongly univergiher own choice, into a much less comfortable position.

Let us now consider the case where Eve is@ativeattacker.
First, Lemma 1 implies that

hashing is upper-bounded by Lemma 5 states that the interactive authentication method is
secure against an active attacker whose Rényi entropy exceeds
9~ (t=2/3)n/2 4 3. 9=(t=2/3)n/4 half the length of the authentication key. Note that the new au-

thentication method has an important advantage as compared
On the other hand, we have to give an upper bound on thestrongly universal hashing in the context of authentication
probability that Eve correctly guesses = f,(s1||sir). As with a partially secret key. When using the latter method, a cor-
above, we conclude first that rect message—authenticator pair reveals, roughly speaking, half
the information about the key (namely, a linear equation, two
Hy((SuSu)|H=h, A=a, Z=2z)>(1-3(/2n)(t=2/3)n  of which are sufficient to determine the key). Hence, the key
(7) is“used up” after one application. With the interactive method,
however, only an arbitrarily small constant fraction of informa-
holds with probability at leagt=(3¢/4n)(t=2/3)n+1 I (7) holds, tion about the key is gained by an opponent observing a mes-
then by Lemma 3, the probability of correctly guessinig at sage (i.e., a challenge) together with its authenticator (i.e., the
most response). This implies that the same key can be used for secure

authentication with a partially secret key many times.

Lemma 5: Let N and/ be integers such tha¥ divides NV
Hence, by the union bound, the success probability of an act®@d2’ > N// holds, and lef be a random variable with range

attack is upper-bounded by K C GF(2V). Let, further, for anyd € GF(2¢) the function
fa: {0, 13N — {0, 1}* be defined as in Lemma 3. Assume
9~ (t=2/3)n/2 4 g 9=(t=2/3)n/4 that there exists a (possibly probabilistic) functigrmapping
13 . 9= (/A A=3e/20)(1=2/3)n 2n 5 GF(2°) to GF(2)
362¢ sidw— s(d) =:d
Corollary 6 is an asymptotic version of Theorem 5 and foBuch thatl’ # d holds for alld, and such that givef (K), the
lows directly from the latter. value f4(K) can, ford €z GF(2°), be guessed correctly (with

some strategy) with probability, taken over the distribution of

Corollary 6: Let2/3 < ¢ < 1andA > 0 be constants. Then y- yhe choice off, and the coin tosses of the guessing strategy.
Protocol UH is, for sufficiently large. and for an appropriate 1o,

choice of the parameters, arob(st Dy, 2 tn, (t—2/3—A)n,
2-2(n) 2=2("))_pA-protocol. Hy(K) < N 2N _10g< N/£>
- 2

Note that the divisibility conditions required in Theorem 5
can be satisfied by appending a certain numbé&'o#t the end Or, equivalently
of the string. Then, Theorem 5 can be applied for an appropriate < 9~ (t/2N)-(Ha(K)~N/2) N/t
choice of the parametersand/, both of order®(n), where @ = + of
s < A -n holds. holds.
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Proof: Note first that, by the same arguments as used inOn the other hand,
the proof of Lemma 3, we can assume without loss of generality

— ; - \N/t
that the function!’(d) and the strategy of guessirfg(k) from Ple] = Z Pr(k) 2 (o= (N/0)/2°)
far (k) are deterministic, and conclude that there exist distinct el- kes
ementsly, ..., dy/, of GF(2°) suchthatfy, (k) is guessed cor- holds. In the case whery restricted tcf is the uniform distri-
rectly from f, (k), whered., := d’(d;), foralli = 1,..., N/¢ bution (this case maximizes the Rényi entropy) with probability
simultaneously with probability at least (a — (N/£) /29N /|€| or greater, we have
NN Z P (k)? > Z P (k)?
(“ - 7) : keX kee

o g (= (N/0) /20N
Let £(C K) be this event. We prove thigt| < /|K]. > [€]- EE
By cancelingN/2¢ of the pairs(d;, d;) and renumbering (c — (N/£)/20)2N/
the remaining pairs, we can obtaiv/2¢ pairs (d;, d;) > ON/2
with the property thatd; ¢ {d}, ..., d._,} holds for all . . . )
i=1,..., N/2¢. (In the worst case, all the paifd;, d,) occur and the claim follows when the negative logarithm is computed
twice in different orderings. Then, every second paly, @) ©n Poth sides. O
must be canceled.)
The event has the property that

B. Privacy Amplification with Extractors

For constructing a protocol allowing privacy amplification
fa (k) = fa (K*) = fa, (k) = fa, (k") with shorter messages, we use a different technique for privacy
amplification, based oaxtractors

Roughly speaking, an extractor allows for efficiently isolating
the randomness of some source into virtually random bits, using
a small additional number of random bits as a catalyst, i.e., in
& = U {k: Fa (k) = b(a) and fy (k) = a} such a V\_/ay_that these bits reappear as a part of th_e almost uni-

t formly distributed output. Extractors are of great importance
in theoretical computer science, where randomness is often re-
for some functiorb(a). Analogously£ must also be contained garded as a resource. They have been studied intensively in the

forall k, k* € £. Otherwise f4, (k) could not be guessed cor-
rectly from 4, (k) for all & € £. Hence£ must be contained in
a set&; of the form

aeGF(2%)

insets&;, i = 2, ..., N/2¢, of the same form (witll; andd] past years by many authors. For an introduction to the subject
replaced byi; andd}, respectively), hence and some constructions, see, for example, [17] or [18], and the
/2 references therein.

cc ﬂ < ®) Re.cent results, .described in the following, show that such

= v functions allow, using only a small amount of true randomness,

=t to distill (almost) the entire randomness, measured in terms of

We show that the cardinality of the set on the right-hand side &, of some string into an almost uniformly distributed string.
(8) is /|K]. First, observe that every set of at ma&t/(<2‘) A disadvantage of using extractors instead of universal hashing
functions f,, is, for pairwise distincd; € GF(2¢), linearly is that a string of length only roughly equal to thn-entropy
independent over GR¢) (the Vandermonde determinant isnstead of the generally greatBényientropy of the original
nonzero in this case, as shown in the proof of Lemma 3). Wandom variable can be extracted. However, this drawback has
define no effect in connection with typical sequences, i.e., almost uni-
form distributions. (Note that for uniform distributions, all the
introduced entropy measures are equal.)

Definition 4: A function E: {0, 1}V x {0, 1}¢ — {0, 1}"
is called &', &’)-extractor if for any distributior on {0, 1}V
with min-entropyH..(P) > ¢’'N, the variational distanéeof
the distribution of

From the linear independence f, , fd;}, we first conclude
thatr; = 2V~“. Furthermore, the linear independencefgf ,
from the set

{fd17"'7fd17fd'17"'7fd2+1} [V E(X/ V)]

to the uniform distribution ovef0, 1}?*" is at moste’ when
choosingX according toP andV independently according to
the uniform distribution ovef0, 1}4.

(becausel; ;1 ¢ {di, ..., d;, dy, ..., d;,,} according to the
choice of the pairgd;, d})) implies

_ ¢ _ :
Tie1 = 11/2 The following theorem was proved in [18]. It states that there
forl =1 N/2¢ — 1. Note that this also holds if, , = d; exist extractors which distill virtually all the min-entropy out

+1 — ™ .. .
ord .. = d' for somei < I+ 1. We conclude that of a weakly random source, thereby requiring only a small (i.e.,
+1 — " .

: 3The variational distanceof two distributionsPy and P, over the same
I€] < rnvjae = QN=(N/20-8 — oN/2 — | /K. rangeX is defined agy", . |Px(2) — Py (2)])/2.
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H_ (S| U=u) (by total amountd) and decreasing some others (by the same
total amount). The function

Inp+1
In2

is monotonically decreasing, hence increasing (or decreasing)
a smallerprobability increases (or decreases, respectively) the
entropy more than modifying a greater probability by the same
amount. Hence, a distribution with distantfgom U}, with min-

imal entropy can be obtained by addiddgo one of the proba-
bilities, and by reducing as many probabilities as possible to
leaving the other probabilities unchanged. One of the probabil-
ities of the new distribution equats™ + d, | 2*d| probabilities

H(S’ |V, U=u) are equal t@), one probability equald—*(2*d — |2*d]) (if this

is not0), and|2*(1 — d)| — 1 probabilities are unchanged and
hence equal ta—*. Thus, the entropy of the new random vari-

bleZ be bounded f below b
“poly-logarithmic”) number of truly random bits. NotethatThe—a €4 can be bounded from below by

orem 7 is formally slightly stronger than the corresponding thel (Z) > 27%(2%d — |2*d]) -k + (|2¥(1 —d)| — 1) - 27F - &

orem in [18] because it not only states that the length of the ex- 1. (1 — g — 27%), O
tractor output is roughly equal to the min-entropy of the source

plus the number of random bits, but even that these bits reappear Proof of Corollary 8: Let &/(N) := 9-VN/log N Then

as a part of the output. Although it has not been explicitly Statet‘ﬂere existsV, such that for allV > N, we have d¢’, ¢)-ex-
it is not difficult to see that the extractors described in [18] dﬁactorE m;pping{o 1}N+d to_{o (i}r whered ’< AN

d
— (—plogp) = —
dp(png)

Extractor

S’ =ES,V
SV Eve’s Information

S’

122-0(1)
<2 -len(S)

Fig. 4. Privacy amplification with extractors.

have this property. (note thatd = O(N/log N) holds for this choice ot’), and
Theorem 7 [18]: For every choice of the parameteé¥s0 < > (6’ — Az)N. By definition, this means that for a uniformly
8" < 1,ande’ > 0, there exists &', £)-extractor distributedd-bit string V" and if H.(T) > ¢'N, the distance

of the distribution of[V, E(T, V)] to the uniform distribution
Uiyr over{0, 1} is at most’ = 2=VN/1s N Because

d([V, E(T, V)], Ussr) = By [d(E(T, V), U,)] < &

?

E: {0, l}N X {()_/ l}d SN {07 1}5'N—2log(1/g’)_o(1)
whered = O((log(N/e"))? log(6'N)).

Corollary 8, Wh'c.h Is a consequence of Theorem 7, is what WBIds for uniformly distributed’, the distance of the distribu-
need for the analysis of Protocol EX. The statement ofCoroIIa{% of EX(T, v) to the uniform distributiort/,, (over {0, 1}") is
8 is related to Theorem 4, where universal hashing is replacetclq ’ o !

T - S .
by extractors, and min-entropy must be used instead of Rérqyimosh/g_ with probability at least — /<" overv, i.e.

entropy (see Fig. 4). Py [d(E(T, V), U,) < Z—W/zlogm'} > 1 9-VN/2lg N

Corollary 8: Leté’, Ay, Ay > 0 be constants. Then there

exists, for all sufficiently largeV, a function
. In analogy to Lemma 4, which gives an upper bound on the
. N d T
B0, 117 x {0, 1}% — {0, 1} effect of side information on the Rényi entropy of a random

whered < A;N andr > (6’ — Ay)N, such that for all random Variable (hereby linking information reconciliation and privacy

Inequality (9) now follows from Lemma 6. O

variablesT with 7 C {0, 1} and amplification with universal hashing) we now need such a re-
, sult with respect to min-entrop#l .. Lemma 7 is an immediate
Hoo(T) > &'N consequence of Lemma 2.

we have Lemma 7: Let X and@ be random variables, and let> 0.

H(E(T, V)|V) > r — g-N'/2=e() ©) Then with probability at least — 2—° (taken overy € Q), we
have
Lemma 6: Let Z be a random variable with ranggé C Hoo(X) — Hoo(X|Q = q) < log|Q| + s.

{0, 1}*. Then
H(Z) > k- (1= d(Uy, Pz) —27") (10) c. Protocol EX

holds, whereU, stands for the uniform distribution over In this section we present Protocol EX for privacy amplifi-

{0, 1}*. cation secure against active adversaries. This protocol uses an

Proof: Letd := d(Ui, Z). We can assume thdt< 1 — extractor function for privacy amplification and the interactive

2~ holds because otherwise the inequality is trivially satisfieghallenge—response authentication methods. One important dif-
The distributionPz of Z can be thought of as obtained from théerence to Protocol UH is that a shorter string is used as the au-
uniform distributionU}, by increasing some of the probabilitiesthentication key. This allows for extracting a significantly longer
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' H_(S|Z=2) . Theorem 9:Let0 < ¢ < ¢ < 2/3andA > 0 be con-
s ' % stants. Then Protocol EX is, for sufficiently largeand for an
, A appropriate choice of the parameters, a rolustD,, 2 ¢, N
L r L le—t 1/2—o(1
' H,81220 [T e | pves Do, oo,y (' =2(1—t) = A)n, 277777 279 -PA-pro-
Protocol EX ' ¢ 1 Information tocol.
5 b Proof: Letn; := (2(1—¢)+ A/3)n, ¢ :=(A/6)n,and
' let z € Z be the particular value known to Eve. We can assume
s [ —p V2o without loss of generality that,; and/ are integers and that
2 2/ dividesn, . (Otherwiseyn; and/ can both be chosen smaller,
Fig. 5. Analysis of Protocol EX. subjectton; = (2(1—¢)+©(1)) nandl = ©(n), respectively,

such that the conditions are satisfied.) Let ngybe the firstn;
PdSH be the remaining, := n — n; bits of S.

Assume first that Eve ipassive We give a lower bound on
the min-entropy of the string; from Eve’s point of view and
given the entire communicatiati held over the public channel.
Since this communication is, givef andZ = z, independent
of Sq1, we have

string in the case where Eve’s information about the origing
string is small.

Let the binary strings (of lengthn) be composed by strings
St and Sy of lengthsn, andns, respectively. Assume that
dividesn; and letd := ny /¢. The substring$;,: =0, ..., d—

1, of Sy are all of lengthY. The functionE is an extractor to be

specified later. Ho(SulC =c¢, S1=s1, Z =2)
Protocol EX (Extractor) = Hoo(SulSt =51, Z = 2)
>(t'—2(1—t)—2A/3)n (11)
Alice Bob with probability 1 — 2=2(")_ (Note that Alice and Bob could
S = S1|Sm S = S1||St publish 57 at the end of the protocol, only helping a possible
_ . _ . adversary.)
St = Sol . 19— S1=Soll -+ [[Sa-1 Let now E be the extractor function according to Corollary 8
h €r GF(2) with d < ¢ = O(n)
I
e § =t —2(1— 1) — 2A/3) n/n»
a:= fu(S1) and
4
@ ber GF(2%) P> (8 — A-n)(3n2))ns = (' —2(1 —t) — A)n.
Forthe choicé’r = Ps, |c=c, z—. andS’ = E(Sm, V) (where
if a # fr(S1): Sy = E(Su, h) V is composed by the firgtbits of H in a fixed representation),
stop we obtain, using (11) anf(H; SZ) = 0
if a = fn(S1): H(S'|C, Z = z2) >p— =N
=Jb S . . .
¢:=folS) c We consider the case where Eve isamtive adversary and
- give an upper bound on the probability of the event that Alice
accept if ¢ = f,(S1): accept and Bob do not both reject and secret-key agreement has never-
S’y := E(Sm, h) if ¢ # fu(S1): reject theless not been successful. It is obvious that this can only occur

if Eve can either guess, (S) from somefy (S) (whereh’ # h)

or guessf;(S) correctly, whereh andb are randomly chosen.

~Theorem 9 implies that Protocol EX can be much more effirg gyccess probabilityof such an active attack is of order
cient than Protocol UH, in particular for strings with a high level

of initial security. Note first that Protocol EX works under the § =279, (12)
same conqltlon as Protocol UH: the Rényi entropy of_the strlng0 see this, note first that

given Eve’s knowledge, must be larger than two thirds of the

length of the string. The length of the extractable key, however, Hy(S1|1Z =2) > na/24+ L+ A)6

can be equal to roughly

holds because of Lemma 1 and by the definitions:efand
Hoo(S) — 2(len(S) — Hy(S)) £. Then, the probabilities of the events thatSt) is guessed

correctly fromf;,/(St) (note that = ©(n,)), that
instead of only the exced$,(.S) — (2/3)len(.S) as for Protocol . .
UH. This expression can b(e ?sub(sté\niiallil (_:ireater, in particular Ho(Silfn(S1) = fulsn), 7 = 2) < a2
if Hy(S) is close tolen(S). On the other hand, sincdd..(S) holds (we call this ever&t), and thatf,(Sr) is guessed correctly,
can be smaller (by a factor up ) than H,(S), Protocol EX given that€ does not occur, are all of order2(™), because of
can also bdesseffective than Protocol UH. An illustration of Lemmas 5, 2, and 3, respectively. The bound (12) then follows
the statement of Theorem 9 is given in Fig. 5. from the union bound. O
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Remark: Note that for the proof of Theorem 9, the following Eve’s Information

combination of the Protocols UH and EX is also sufficient. The i<
key is partitioned as in Protocol EX, but the authenticationtech- |
nigues of Protocol UH are used for the shorter key, i.e., stronglh
universal hashing and challenge—response confirmation (Se g
tion 11-B). However, Protocol EX has an important advantage
as compared to this protocol, and to Protocol UH, which is not
stated explicitly in Theorem 9. In case of failure because of a de
tected active substitution attack, Protocol EX can (with roughly
the same parameters) be restarted again and agéin {imes)

with the same key until secret-key agreement eventually suc
ceeds. The reason for the possibility of such multiple trials is
that the observation of a correctly authenticated message n
veals—unlike in the case of authentication with strongly uni-
versal hashing—only a small fraction of the total information
about the authentication key (see Section Il1I-A).

(2/3) len(S)

Hoo(S|Z=2)

1A\

|

H, (S|Z=2)

SR U N EU B R A

Protocol UH

IV. DISCUSSION Protocol EX

We have described two protocols, Protocol UH and Protoco
EX, for privacy amplification secure in the active-adversary
model. Protocol UH is based on universal hashing and it
successful as soon as the Rényi entropy of the partially secr:
key, from the adversary’s viewpoint, exceeds two thirds of
the length of the string. Then the protocol distills a string
whose length is roughly equal to this excess. Protocol UH is
computationally extremely simple and works for strings of arjig. 6. Privacy amplification secure against active adversaries.
length. For sufficiently long strings, Protocol EX, based on
extractor functions, can be used. The condition on the initigértain conditions stronger than the ones for the passive-ad-
key is the same as for Protocol UH, but the extracted highlersary case. For privacy amplification, however, we have not
secret key is often longer. An additional advantage of Protoashown these conditions to be necessary, and we state as an open
EX is that failed privacy—amplification attempts do (a|m05tbr0b|em to prove or disprove their necessity.
not use up the key: the procedure can be repeated many time contrast to the independent-repetitions scenario, a certain
with the same key. price has to be paid for the channel’s missing authenticity even

In Fig. 6, the required conditions on the partially secret keyrobust privacy amplification is possible in principle: the gen-
as well as the possible length of the resulting secret key wherated key is shorter. It is a challenging open problem to find
using either Protocol UH or EX are illustrated and compared fotocols extracting the same amount of secrecy in the presence
the corresponding quantities in the case of privacy amplificatief active adversaries as is possible against only passive wiretap-
(according to [1]) in the passive-adversary case. This repres@ars (or to prove that such protocols cannot exist).
tation, therefore, shows the price that must be paid for authenti-
cation in the context of privacy amplification. REFERENCES
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