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Abstract— We present a single letter characterization of the
secrecy capacity of the single-input multiple-outputs (SIMO)
channel under Gaussian (and possibly colored) noise. To do so,
we transform the channel into a scalar Gaussian wiretap channel
using standard techniques of communications theory. The result
is used to study the impact of slow fading on the secrecy capacity
of the channel, and how the use of multiple receive antennas could
improve the performance of the system.

I. INTRODUCTION

A cryptosystem is considered unconditionally secure if it
cannot be broken even with infinite computing power [1]. To
be more precise, let Alice (legitimate sender), Bob (legitimate
receiver) and Eve (eavesdropper) be the main characters of
the problem. Alice and Bob wish to convey a secret using a
public channel in such a way that Eve gains no information
about the secret that is being shared. In [2] Shannon proved
that if the one-time cipher is used to encrypt the secret, they
would achieve an unconditionally secure transmission, but his
proof also concluded that the length of the encryption key
should be at least as long as the message itself. In [3] Wyner
assumed the presence of noise in the communication channels,
in a model that he called the wiretap channel. His main result
was that, under certain conditions, a secret message could be
transmitted at a positive rate without revealing it to Eve.

This work is an extension of Wyner’s ideas to the case of the
single-input multiple-outputs (SIMO) channel under (possible
colored) additive Gaussian noise. Using some standard calcu-
lations from communication theory [4], we show that a SIMO
channel has an equivalent scalar channel (from the information
theory point of view) and that such a channel is a Gaussian
wiretap channel [5]. This fact allows us to get a single letter
characterization for the secrecy capacity of the channel. Later,
we extend the results to the case of slow fading, this is, the
channel gains have random values but fixed for all time.

We have chosen this particular channel by two reasons: it is
a nice generalization of Wyner’s work on its own right, serving
as a model for the distribution of secret keys to several users
inside a network, but also, because it put us one step closer
to understand how secure a wireless network can be. SIMO
channels, and more generally, MIMO channels are successful
models for the wireless environment, and it seams natural to
ask what kind of limits one faces as an engineer at the moment
of evaluating the security of a wireless network.

The structure of the paper is the following. Section 2
summarizes previous results and gives an intuitive idea of
what improvements can be expected with the introduction of
a multiple-outputs model respect to the traditional Gaussian
wiretap channel. Section 3 and 4 presents the core of the
calculations. Section 5 concludes with some final remarks and
a glimpse of what is under current research.

Finally, a word on notation: scalars will be denoted by italic
typeface (x), vectors by boldface fonts (y) and matrices by
roman capital letters (H).

II. PREVIOUS RESULTS

In [3] Wyner obtained a single letter characterization for
the secrecy capacity of the wiretap channel. The wiretap
channel (see Figure 1) is a degraded form of a broadcast
channel, where the goal is to maximize the transmission rate
in the main channel while making negligible the amount of
information leaked to the cascade (wiretapper) channel. The
secrecy capacity is the maximal rate at which this goal is
achieved.

Wyner result states that if the capacity of the main channel
is CM and the capacity of the overall wiretap channel is CMW ,
then the secrecy capacity of the channel CS is given by

CS = CM − CMW .

One consequence of this result is that in order to have a
positive secrecy capacity CS the wiretapper channel must be
noisier than the one used to transmit the secret.

During the nineties, Maurer [6] presented a strategy that
allows a positive rate even when the wiretapper observes a
“better” channel than the one used by the legitimate users.
The key element of his protocol is a procedure called privacy
amplification [7], that by using public discussion reduces a
initial piece of random nature (to fix ideas, a sequence of bits)
into a smaller entity which is known only by the legitimate
users. The procedure is of iterative nature; it involves Alice
and Bob sharing information by means of a “conversation” in
which they get rid of all the bits that are known to Eve.

Now we make an important observation: during the pri-
vacy amplification stage, Alice and Bob transmit correlated
sequences along successive iterations. In communications sys-
tems there exists a similar approach to achieve a completely
different objective: if a channel is poor, for example if the
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Fig. 1. wiretap channel block diagram.

environmental conditions change abruptly and the noise power
is high, we can retransmit the sequence n times, improving the
probability of correct detection in the receiver’s end. This is
a repetition code, and is a very simple example of a more
general idea known as time diversity. We may ask then: could
we use other kinds of diversity (frequency, code, or space)
to achieve unconditional security? We will provide a partial
answer to this question by the inclusion of multiple receive
antennas in our model. But first, we state some known ideas
and results about the wiretap channel.

A. The wiretap channel

Consider two discrete memoryless channels (DMC) as the
ones depicted in Figure 1.

The encoder takes the input sequence Uk = (U1, . . . , Uk)
and transforms it into a n symbols sequence Xn =
(X1, . . . , Xn). The rate of the code is R = k/n.

The security engineer must design an encoder/decoder pair
that ideally maximizes the transmission rate of the legitimate
user, subject to the constraint that the rate at which the
wiretapper learns the sequence is as small as possible.

The wiretapper knows the encoding used, and its ignorance
about the source depends only on the noise realization present
in the channels. The source is assumed to be stationary
and ergodic, and takes its values over a finite alphabet. The
probability of block decoding error is denoted by

Pe = Pr{Uk �= Ûk}.

The wiretapper uncertainty about the source is measured by
the equivocation

H(Uk|Zn),

after observing the output of the channel.
Definition 2.1: The fractional equivocation

δ =
H(Uk|Zn)

H(Uk)
.

The rate of the code

R =
H(Uk)

n
.

Definition 2.2: (Achievability) The pair (R∗, d∗) is said to
be achievable if for all ε > 0 there exists an enconder/decoder
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Fig. 2. Degraded broadcast channel block diagram.

pair such that

R ≥ R∗ − ε

δ ≥ d∗ − ε

Pe ≤ ε
Theorem 2.1: [3]. The set of achievable pairs (R, d) can

be characterized as follows

R = {(R, d) : 0 ≤ R ≤ CM , 0 ≤ d ≤ 1, Rd ≤ CS} (1)

where CS is the secrecy capacity and its value is

CS = CM − CMW .

B. Gaussian wiretap channel

Although Wyner’s work only considered discrete-time chan-
nels, Leung and Hellman [5] proved that the results also hold
in a particular case of continuous-time channel. A Gaussian
wiretap channel is wiretap channel where the noise is additive
white and Gaussian, such that the channel is power limited (P )
and the noise processes are independent and have components
that are i.i.d. N (0, σ2

1) and N (0, σ2
2) respectively.

The achievable region of the Gaussian wiretap channel is
the same as defined in eq. 1 with

CM =
1
2

log
(

1 +
P

σ2
1

)

CMW =
1
2

log
(

1 +
P

σ2
1 + σ2

2

)

III. SIMO GAUSSIAN WIRETAP CHANNEL

Let us consider the degraded Single Input Multiple Output
(SIMO) channel depicted in Figure 2. We will determine the
secrecy capacity of the SIMO Gaussian wiretap channel under
the following conditions:

• Alice sends symbols that have limited average power P >
0, i.e.,

1
K

K−1∑
k=0

E[x2[k]] ≤ P.

• Bob uses nr receive antennas and Eve uses mr receive
antennas to recover Alice message.

• Alice sends no message to Eve, so there are no common
messages.

• The channel parameters are represented by h ∈ C
nr and

H ∈ C
mr×nr .



In the k-th time slot, the following relations are satisfied

y[k] = hx[k] + w1[k]
z[k] = Hy[k] + w2[k],

}
(2)

where w1 and w2 are independent random vectors, each one
of them being complex and jointly Gaussian distributed with
mean 0 and non-singular covariance matrices Σ1 and Σ2

respectively.
Our goal is to show that the channel described by eq.

2 can be represented by an scalar channel and that such
representation is in fact a Gaussian wiretap channel [5]. The
next lemma is a particular case of the theorem of irrelevance
[4], but it is included given that the cryptographic nature of
the application under study.

In the following, time dependence will be assumed implic-
itly and the k index will be dropped from the equations.

Lemma 3.1: Consider the channel

y = hx + w, (3)

where w is complex additive Gaussian noise with zero mean
and covariance matrix Σ and h ∈ C

n.
A sufficient statistic to correctly determine x from y is the

scalar
ỹ = h†Σ−1y.

Proof: Without lost of generality, let us consider x ∈
{−1, +1}. Let

H0 : y = +h + w
H1 : y = −h + w.

The MAP rule is

Pr{y|H0} > Pr{y|H1}
e(−

1
2 (y+h)†Σ−1(y+h)) > e(−

1
2 (y−h)†Σ−1(y−h))

=⇒ h†Σ−1y > 0.

As a direct implication of Lemma 3.1 and the fact that
sufficient statistics “preserve mutual information” [8], we have

I(x;y) = I(x; ỹ). (4)

Further, the capacity of the channel described by eq. 3 is

C =
1
2

log
(
1 + (h†Σ−1h)P

)
. (5)

Theorem 3.1: The channel described by eq. 2 is equivalent
to the following Gaussian wiretap channel

ỹ[k] = h̃2
1x[k] + w̃1[k]

z̃[k] = h̃2
2x[k] + w̃2[k],

}
(6)

where

h̃2
1 = h†Σ−1

1 h,

h̃2
2 = (Hh)†(HΣ1H† + Σ2)−1Hh,

w̃1[k] = h†Σ−1
1 w1[k] ∼ N (0, h̃2

1),

w̃2[k] = (Hh)†(HΣ1H† + Σ2)−1(Hw1[k] + w2[k])

∼ N (0, h̃2
2).

Proof: Application from the Lemma 3.1 yields the
following sufficient statistics for detecting x[k] from y[k] and
z[k]:

ỹ = h†Σ−1
1 y (7)

z̃ = (Hh)†(HΣ1H† + Σ2)−1z (8)

Then, it is direct to obtain the scalar model described by eq.
6.

The resulting degraded broadcast channel is in fact a Gaus-
sian wiretap channel because from the point of view of Bob
and Eve, the best strategy they can employ in order to detect
correctly x[k] is to compute the projections given by eqs. 7 and
8. In addition, the fact that sufficient statistics conserves the
mutual information makes both the scalar and the vectorial
channel completely equivalents from the information theory
perspective.

Corollary 3.1: The secrecy capacity of the SIMO Gaussian
wiretap channel is

CS =
1
2

log
(

1 + h†Σ−1
1 hP

1 + (Hh)†(HΣ1H† + Σ2)−1(Hh)P

)
(9)

Proof: Since the SIMO Gaussian wiretap channel has a
scalar representation that corresponds to the Gaussian wiretap
channel, from [5] we known that the secrecy capacity of the
channel is

CS = CM − CMW ,

CM being the capacity of the main channel and CMW being
the capacity of the overall wiretap channel. Their values are

CM =
1
2

log
(
1 + h†Σ−1

1 hP
)

CMW =
1
2

log
(
1 + (Hh)†(HΣ1H† + Σ2)−1(Hh)P

)

which concludes the proof.
A necessary condition to have a positive secrecy capacity

CS is to require that the matrix

Σ = Σ−1
1 − H†(HΣ1H† + Σ2)−1H

to be positive definite. If the noise processes w1 and w2 are
uncorrelated, and

Σ1 = σ1Inr Σ2 = σ2Imr , (10)

we can find a simpler expression for Σ. The application of the
Matrix Inversion Lemma [9] yields

Σ = (σ1Inr + σ2HH†)−1. (11)

For this case, we know that the matrix Σ is Hermitian, and
all its eigenvalues are real numbers. However, this is just
necessary to have the positive definiteness condition; we must
impose externally the condition that all eigenvalues of Σ must
be positive numbers.



IV. THE SIMO WIRETAP CHANNEL UNDER SLOW FADING

The results obtained in the previous section can be used
to extend the idea of secrecy capacity to the case when the
channel parameters are random but fixed for all time (slow
fading).

Conditioning on realizations of H and h the secrecy ca-
pacity is given by eq. 9. The effect of fading is included by
considering that {h[k] : k ∈ Z} and {H[k] : k ∈ Z} are
random processes, and in consequence, the secrecy capacity
is no longer a deterministic value but a random process itself.

The random nature of the problem implies that the usual
notions of secure communication are meaningless, in the sense
that the probability that the secrecy capacity drops below a
given transmission rate R is positive. Because of this, we
prefer to study the outage event

O(R) = {R > 0 : CS < R},
and its probability of occurrence Pout

Pr{1
2

log
(

1 + h†Σ−1
1 hP

1 + (Hh)†(HΣ1H† + Σ2)−1(Hh)P

)
< R}.

To get an insight on the behavior of this formula, we study
the following case: consider that Σ1 = σ1

2Inr
and Σ2 =

σ2
2Imr

, and that H is unitary. Then the outage probability is

Pr{1
2

log

(
1 + ‖h‖2SNR

1 + ‖h‖2 σ12

σ12+σ22 SNR

)
< R} (12)

where SNR = P/σ1
2.

If the main channel is extremely noise, this is, if σ1
2 � σ2

2,
then CS → 0 and the system is in outage with probability 1.
On the other hand, if σ1

2 
 σ2
2 then the secrecy capacity

CS tends to
1
2

log
(
1 + ‖h‖2SNR

)
.

Under Rayleigh fading, ‖h‖2 is a sum of the squares of nr

independent Gaussian random variables and its distribution
is a χ2 density with 2nr degrees of freedom. A standard
approximation for this probability (see Chapter 5 [10] for more
details) yields

Pout = Pr{‖h‖2 <
2R − 1
SNR

} ≈ (2R − 1)nr

(nr!)SNRnr
.

In any intermediate situation, we have that

Pout = Pr{‖h‖2 <
2R − 1

1 − 2R σ12

σ12+σ22

1
SNR

}.

A similar computation to the case of σ1
2 
 σ2

2 allows us to
conclude that the outage probability decays as 1/SNRnr . It is
not difficult to see that in the case of nr = 1 (the case of a
scalar Gaussian wiretap channel under slow fading), ‖h‖2 has
an exponential probability density, and therefore, the outage
probability decays as 1/SNR. The addition of several receive
antennas introduces a diversity gain of nr.

V. CONCLUSION

In this work we have presented an extension of Wyner’s
result to the case of SIMO channels under (possibly colored)
additive Gaussian noise.

We have shown that the SIMO channel under Gaussian
noise can be represented by a Gaussian wiretap channel, and
that all the properties of this class of channels can be carried
out to this new scenario. In particular, there exists a single
letter characterization for the secrecy capacity of the SIMO
channel.

We also observe in a very simple example that under slow
fading conditions, the use of multiple receive antennas pro-
vides an advantage with respect to a single-antenna channel.
Although we cannot conclude from this particular case that
antenna diversity improves the security of the system, we
believe that it is the general case.

At the time of the submission of this paper, the authors
are considering other possible ways to come up with security
models for the multiple user channel, including the multiple
inputs case and the introduction of fading in the channel. One
particular direction corresponds to the case where the broad-
cast channel is no longer degraded, such as the one considered
by Csiszár and Körner [11]. It is conjectured that in this
situation unconditional secure communications is still possible,
but there is no assurance on a single letter characterization of
the secrecy capacity such as the one presented in this paper.
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