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Abstract— We investigate the use of capacity and near-capacity
achieving LPDC codes on the wire tap channel, where the dual
conditions of reliable communications and security are required.
We show that good codes for conventional channels (like BSC
and BEC) also have interesting and useful security properties.
In this paper we show the connection between the decoding
threshold of the code and its security against eavesdropping. We
also give practical code constructions for some special cases of
the wire tap channel and show that security (in the Shannon
sense) is a function of the decoding threshold. Some of these
constructions achieve the secrecy capacity as defined by Wyner.
These codes provide secure communications without conventional
key distribution and provide a physical-layer approach for either
secure communications or key distribution.

1. INTRODUCTION

The notion of communication with perfect security was de-
fined in information-theoretic terms by Shannon [1]. Suppose
a k-bit message S is to be transmitted securely from Alice
to Bob across a public channel. Perfect security is said to
be achieved if the encoding of S into a transmitted word
X is such that the mutual information I(S;X) = 0. From
this definition, Shannon concluded that Alice and Bob should
necessarily share k bits of key for achieving perfect security.

An alternative notion of communication with perfect secu-
rity was introduced by Wyner [2] for the more general wire
tap channel. In a general wire tap channel system (Fig. 1), D;
and D, are discrete memoryless channels (DMCs). The two
DMCs have the same input alphabet but may have different
output alphabets. Dy and D, of a wire tap channel system are
called the main channel and the wire tap channel, respectively.
Wyner’s notion of secrecy capacity is the maximum possible
rate of information transmission between Alice and Bob that
still keeps Eve totally ignorant. If the main channel is less
noisy than the wire tap channel [4], then the secrecy capacity
is

Cs = max [I(X;Y) - I(X; 2)], @)
Px(z)
where the maximum is over all possible channel input distri-
butions Px(z) of X.

Wyner showed that if D, is a degraded version of Dy (Ds
is Dy concatenated with another DMC) then secrecy capacity
is positive. Csiszdr et al. [4] showed that the secrecy capacity
is positive for the cases when D; is “less noisy” than Ds.
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Fig. 1. The wiretap channel system

Maurer [5], [6] generalized this even further and was able to
conclude several very powerful results for a general D; and
Ds.

In this paper, we investigate the use of LDPC-based codes
for perfectly secure information exchange in some special
cases of wire tap channel systems with a binary erasure
channel (BEC) or binary symmetric channel (BSC) for the
wire tapper’s channel. There are several results in this paper:

1) We make the connection between the threshold of LDPC
codes (under message-passing decoding) and perfect
security.

2) For the case of a noiseless main channel and BEC wire
tap channel we construct codes based on LDPC codes
that achieve perfect security and have rates approaching
the secrecy capacity.

3) For the case of the BEC main and BEC wire tap channel
we provide code constructions and give conditions for
achieving perfect security on the wire tap channel and
zero probability of error on the main channel. Perfect
security in this case is achieved only when capacity-
achieving erasure-correcting codes are used, and the
code rate is below secrecy capacity.

4) For the case of a noiseless main channel and a binary
symmetric channel (BSC) as the wiretapper’s channel,
we provide a coding solution using codes that have good
error-detecting capability. Perfect security is achieved
asymptotically, but at rates tending to zero.

The closest previous work to this is in [9] where certain



aspects, such as the existence of LDPC codes for coding
over wire tap channels have been studied in the context of
key generation from correlated source outputs; however, the
context and methods in our work are different than [9].

The coding problem for Alice in the wire tap channel system
involves adding redundancy for enabling Bob to correct errors
(across the main channel) and adding randomness for keeping
Eve ignorant (across the wire tap channel). Let us assume
that Alice needs to transmit one out of M equally likely
messages i.e. a message denoted u (denoted as S in Fig. 1)
is such that u € {1,2,---, M} and Prob{u = i} = 1/M.
Alice uses M codes C;, 1 < i < M with |C;] = L and
block-length N. A message u is encoded into a transmitted
word x as follows: x is chosen uniformly at random from
the code C,. The transmitted word x , in general, belongs
to the overall code C = U;C;. The rate of information
transmission from Alice to Bob (in terms of bits per channel
use) in such a setting is given by log, M/N. The receiver
on the main channel (Bob) decodes a received word y with
respect to the overall code C' into a decoded message
(say, by Maximum-Likelihood decoding). The eavesdropper
on the wire tap channel is assumed to have unlimited power
to process the received word z.

The objective of Alice and Bob in a wire tap channel
system can now be given a precise definition. Let U, U,
and Z be random variables denoting Alice’s message, Bob’s
decoded message, and Eve’s received word, respectively. Let
H(V) represent the entropy of a random variable V. Then,
the objective is to achieve the following:

Prob{U # U} — 0. )
H(U|Z) — H(U) = log, M. (3)

The constraint (3) is referred to as the security constraint,
while (2) is called the reliability constraint. If an encoder (as
in Fig. 1) with R, = log, M/N satisfies the security and
reliability constraints for a given wire tap channel system,
then such an encoder is said to achieve a secrecy rate R;.
In [12], we have shown that, if each C; is chosen to be a
capacity-achieving code on Dj, and U;C; is chosen to be
a capacity-achieving code on D¢, then we can achieve the
secrecy capacity of any wire-tap system (Fig. 1), where both
D; and D, are DMCs. We now give a sketch of the proof in
the next section.

II. PROOF OF EXISTENCE OF CODES AND CODING
METHOD

A sufficient condition for perfect security on the wire tap
channel is : Each C), should approach capacity over the wire
tap channel (similar to the special case considered by Wyner in
[2]). We present the criterion in the following theorem without
proof.

Theorem 1: If the codes Cy,u € {1,2,---, M} achieve
capacity over the wire tap channel, then Prob{U = u|Z =
z} = Prob{U = u}.

We now focus on the probability of error on the main
channel. Let Py be the probability of erro averaged over an
ensemble of codes and all possible transmitted messages. Let
ML = eNBEi. [, = ¢NEB2 Note that the secrecy rate of a
code from the ensemble is R; = R; — Ry. We now give the
following theorem without proof.

Theorem 2: The average probability of error is bounded by

Pg < exp{[-NEn(R1)]} + exp{[-NE,(R>)]}.

where E,,,(R;) and E,,(R2) are the random coding exponents
for the wire tap channel and the main channel respectively.

We know that E,,(R3) > 0 for 0 < Ry < Cy,, where Cy, is
the channel capacity of the wire tap channel. Hence, Theorem
2 says that there exists a code in a suitable ensemble such that
the security constraint can be satisfied (each C, can approach
capacity on the wire tap channel) with arbitrary accuracy by
increasing the block-length; at the same time, the same code
can satisfy the reliability constraint with arbitrary accuracy
provided the rate R; is such that E,,(R;) > 0. Hence, the
maximum secrecy rate achievable by a code from the ensemble
is I(Q2;5) — Cy, where @2 is the distribution on X that
maximizes the random coding exponent E,,(R3). Thus, if both
the main channel and wire tap channel are symmetric, secrecy
capacity is achievable.

We now study the design and use of linear codes over a
wire tap channel system. To transmit k-bit messages, we first
select a (n,!) linear binary code C such that K < n — . Out
of the 27~ cosets of C, we choose 2% cosets and let each
message correspond to a chosen coset. The selection of the
cosets is done in a linear fashion. Suppose G is a generator
matrix for C' with rows g1, g, - - -, and g;. We select & linearly
independent vectors hy, hy, ---, and hy from {0,1}" \ C.
Let G* be the matrix with rows as h;, hsy, ---, and hy. The
coset corresponding to a k-bit message s = [s1 $o - 8] is
determined as follows:

s = s1hy + soshy +--- + sphy, + C. @

Though the above correspondence is deterministic, the encod-
ing procedure has a random component in the selection of the
transmitted word. A k-bit message s is encoded into a n-bit
word randomly selected from the coset of C' corresponding to
s. Hence, the transmitted word, x, is given by

x =sihy + so2hy + - + sghy +vi1g1 +v2g2 + -+ - +uigy,
where v = [v; va - - - ] is an uniformly random -bit vector.

III. ERASURE WIRE TAP SYSTEMS

We now concentrate on wire-tap systems in which Dy (Fig.
1) is a binary erasure channel (BEC). Such systems appear in
the quantum key distribution problems. In [12], we considered
the problem where D, is a BEC, and D; is noiseless. We
showed that dual codes of good erasure correcting LDPC
codes can be used to design codes for such systems. We used
the following result from [3, Lemma 3].



Theorem 3 (Ozarow, Wyner '84): Let an (n,n — k) code C
have a generator matrix G = [ay - - -a,], where a; is the i-
th column of G. Consider an instance of the eavesdropper’s
observation z € {0,1,7}™ with g unerased positions given by
{i:z; #7} = {i1,1i2,- - ,4,}. 2z is secured by C iff the matrix
G, = [ai,a;, ---a;,] has rank p.

We now give the following examples from [12].

Example 1: Let Dy be a BEC with erasure probability e.
The C™(z2,2%) ensemble of (3,6)-regular LDPC codes has
threshold o* (22, 2%) ~ 0.42. Let M be an adjacency matrix
from the ensemble with large n (say, n > 10%). M is an n/2 x
n binary matrix with row weight 3 and column weight 6. The
(n,n/2) code C*, dual of C, with generator matrix M can be
used for € > 0.58 with perfect secrecy. The information rate
between the honest parties in this case is R = 0.5 compared
to the upper bound of 1 — (1 —€) = 0.58 (from (1)).

Example 2 (Tornado codes): A rate-2/3 tornado code en-
semble with threshold § = 0.33257 has been reported in [10].
A parity-check matrix M for a code from the ensemble will
have dimensions n/3 x n. The (n,n/3) code C*, dual of
C, with generator matrix M can be used over an erasure
wire tap channel for € > 0.66743 with perfect secrecy. The
information rate between the honest parties in this case is
R = 2/3 = 0.66666... compared to the upper bound of
1—(1-¢€)=0.66743.

A. Erasure main channel and erasure wire tap channel

In this section, both Dy and D; are BECs with erasure
probabilities €,, and €, respectively. Our results apply with a
small modification to systems with DMCs other than the BEC
as Dj. According to (1), the secrecy capacity of this system
is Cs = €, — €, Which is positive whenever €,, > €,,.

We first pick an LDPC code C; of length n from an
ensemble of codes having asymptotic erasure threshold e,,.
That means, as n — oo, C; recovers all the erasures on an
erasure channel with erasure probability up to at least €,,, using
the standard iterative erasure decoding algorithm. Let Cy have
rate 1, and let H; be the parity check matrix of the code C}.
Next we pick n(l — r9) independent vectors from the dual
space of C1, where 1 < ra. Let Hy be the matrix formed by
these vectors as rows. Hy has dimensions n(1 — r2) X n. Let
H, be the rest of the independent vectors in the dual space
of Cy. As we will see shortly, we must have €, > (1 — r3)
in order to guarantee some equivocation for Eve. Let Ha be
the parity check matrix of a code C3. We want C to have
asymptotic erasure threshold €,,. We then have,

1—r2 > €, 5

and
1—1r1 > €y- (6)

We now discuss the encoding procedure. Alice first takes a
n(rq —r1)-bit long message vector S, and forms a n(1 —ry)-
bit long vector by adding n(1 —rs) 0’s on top of S. She now
chooses an X at random from the solution set of the equation
shown in Figure 2 and transmits it.

Fig. 2. The encoding procedure

We illustrate this encoding procedure in Figure 3. Note
that, the number of solutions to the equation, HoX = 0, is
gn—n(l—r2) — 9nr2 However, for some particular choice of
S, say Si, the number of solutions to the equation shown in
Fig. 2 is 27~ (1-m1) = 2771 Obviously, the same X cannot
be a solution for two different values of S. This explains the
splitting of the solution set space of the equation H,X = 0
into g:—:f = 27(r2=m1) disjoint subsets, each corresponding to
a different value of S. Hence the rate of our code is (ro —71).
The interesting point to observe in Figure 3 is that we are not
using the whole space of {0,1}".

solution set of H,X=0

/

solution set of Fig. 2
for S=S,

solution sef of Fig.
2 for S=8;

solution set of H,X=S,

solution set of H,X=8;

Fig. 3. The encoding space

B. Equivocation across the wire tap channel

In this section, we calculate the equivocation for Eve.
Since Eve’s channel is a BEC with erasure probability €,,,
with probability tending to 1, Eve will have ne,, erasures as
n — oo. If we have €, > (1 —r3), using H»X = 0, Eve must



have at least 2™{€w=(1=72)) golutions for X, all of which are
equally likely. All these solutions will differ from each other
in the erased positions. Since €, is the erasure threshold of
the code having H; as the parity-check matrix, any submatrix
formed using ne,, columns of H; will have full column rank.
Thus every solution of HoX = 0 will give a different value of
S, all of which are equally likely. The equivocation for Eve is
then A = n(e, — (1—72)). If Hy is the parity-check matrix of
a capacity-achieving code on an erasure channel with erasure
probability €, A = n(ry — ry), and the message will be
completely secure from Eve.

C. Probability of error on the main channel

When Bob receives a vector Y, he first decodes it by using
the standard iterative erasure decoding technique for LDPC
codes on the Tanner graph of the code Cs. Let the erasure
probability of the main channel be at most €,,. Then, as n —
00, with probability tending to 1 he will be able to recover the
transmitted word X. Bob then can find out the product HX,
which is his estimate of the message S.

Example 3: Let Cy be a (3,6)-regular LDPC code with
block-length n. Cy has rate 7o = 1/2. The code Cj is
chosen to be another LDPC code with all variable nodes
having degree 5 and all check nodes having degree 6. C
has rate r; = 1/6. The LDPC code C> has an erasure
threshold a* &~ 0.42. The code C7 has an erasure threshold
B* & 0.55. Thus, the secrecy rate is 7o —r; = 1/3, and an
equivocation of n(8* — (1—rz)) = 0.05n is guaranteed across
the wiretap channel having erasure probability greater than
B* = 0.55. Bob can decode the message with asymptotically
zero probability of error on the main channel having erasure
probability at most a* = 0.42.

D. Remarks

Like in the case of noiseless main channel, we could have
chosen C to be an LDPC code with erasure threshold 1 — ¢,,.
C’ll wil then have to be contained in Cy, which has erasure
threhold €,,,. The matrices H; and H> will be the parity-check
matrices of Ci- and Cs respectively. Since the dual of an
LDPC code is likely to have a significantly high number of
low-weight codewords, this requirement appears to be contrary
to intuition. A very similar code design problem arises in the
construction of quantum error-correcting codes using sparse
graphs [7]. After studying several constructions, the authors
of [7] conclude that such codes are difficult to construct and
are unlikely to have high thresholds.

IV. NOISELESS MAIN CHANNEL AND BSC WIRETAP
CHANNEL

In this section, D; is noiseless and D5 is a binary symmetric
channel (BSC) with error probability p in Fig. 1. We let C
be an (n,n — k) code and C be the entire space {0,1}".
For an arbitrary k-bit message S = s, the transmitted word
X € sG*+C. See section II for the definition of G*. Since the
cosets of C' cover the entire space of n-tuples, Eve’s received
vector Z belongs to some coset of C, say uG* + C. If e

denotes the error vector introduced by the BSC in the wire
tap channel, we have,

Prob{Z € uG*+C|S = s} = Prob{e € (u+s)G*+C} (7)
and
Prob{e € (u+s)G*+C} = Prob{ec w+C} (8)

for some n-tuple w. We can now state the criterion for
selecting the code C' to guarantee security of the message S:
we choose C' such that for any n-tuple w, we have

Prob{e € w+ C} ~27F. )

Using the above condition in (7),(8), we see that Eve is equally
likely to find Z in any coset of C' given any message S = s.
Assuming all S = s are equally likely a priori, Prob{Z €
uG*+C' is independent of u; hence, Prob{S = s|Z € uG*+
C} ~ 27k, and perfect security is guaranteed.

Using the MacWilliams identities [8, Page 127] for the
(n,m — k) linear code C, we get

n—wt(e), wi(e 1 - n—i i
Y Ty = 2y Aie + )" (@ —y), (10)
ecC i=0

where A} is the number of codewords of weight ¢ in the dual
code C+. Using x = 1 —p, y = p, and A) = 1 in (10), we
get

n
prt(e)(l _ p)n—wt(e) — 2—k + 2—k Z A;(]. _ 2p)i.
ecC =1
Using the MacWilliams identities [8, Page 137] for the coset
w + C, we get

1 o ; ;
Z mn—wt(e)ywt(e) = o EA;(W)(.Q: +y)"i(z — y)’,
ecw+C =0
(11)

where

Aj(w) = az(w) — Bi(w) (12)

with a;(w) equal to the number of codewords of weight 7 in
the dual code C* orthogonal to w, and 3;(w) equal to the
number of codewords of weight i in the dual code C+ not
orthogonal to w. Using z =1 —p, y = p, and Aj(w) =1 in
(11), we get

Yo PO —p)r ) =2 k2 B Y A (w) (1-2p)".
ecw+C i=1
(13)

From (12), we see that |A}(w)| < A}

We now state the main security criterion as a theorem
without proof.

Theorem 4: 1If

n
D A(1-2p)' m0, (14)
=1

then Prob{e € w + C} = 27* for all n-tuples w.



We now provide some examples that satisfy the requirement
of (14).

Example 4: (Single parity check codes) The dual of a
(n,m—1,2) single parity check code is the (n, 1,n) repetition
code with weight distribution Aj = 1 and A/, = 1. Hence,

n
> Aj1-2p)'=(1-2p)" =0
i=1
for large n. However, the secrecy rate 1/n — 0 for large n.
This is an example that was first used by Wyner in [2] to
motivate coding over a wire tap channel system.
Example 5: (Hamming codes) The weight distribution of
the dual of the [n = 2™ — 1, n —m, 3] Hamming code H, is

6 =1and A£n+1)/2 = n. Hence,

n
D A1 -2p)' =n(1-2p)" V2 0
i=1
for large n. As in the previous example, the secrecy rate tends
to zero for large n.

We now state the following theorem without proof that
generalizes the above construction method.

Theorem 5: Let {C(,)} be a sequence of (n,n —k,) codes
such that Prob{Detection Error}< 27%» over a BSC with
error probability p, 0 < p < 1/2 and lim,,{k,/n} <
log,(1/(1—p)). Let A} be the number of codewords of weight
4 in the dual code C’(J;L ) Then for any n-tuple w, as n — oo,

D Ai(1—2p)' 0.
=1

The existence of (n,n — kj,) linear codes with probability
of detection error less than 2%~ is well known [11, Section
3.6]. Suppose we find a class of such error detecting codes
such that

kn

lim —.
n—oo N

R=

Then, for large n, the code C(n), when used as the code
C over a wire tap channel system with a BSC (with error
probability p) as the wiretapper’s channel, provides perfect
security whenever R < —log,(1 —p), or p > 1 — 278, The
maximum possible secrecy rate that can be achieved by this
construction is therefore — log,(1 — p).

Codes such as Hamming codes and double error-correcting
BCH codes are examples of such error-detecting codes. How-
ever, most known class of such codes have R = 0, asymptot-
ically.

V. CONCLUSION

When the wiretapper’s channel is a BEC and the main
channel is noiseless, we have presented codes that approach
secrecy capacity. To our knowledge these are the first and only
such codes. However, we have shown that capacity-achieving
codes are not necessary in this case. If a code exhibits a
threshold behavior across a BEC (codes such as regular LDPC
codes), its dual can be used effectively over a wire tap channel

system with a BEC as the wiretapper’s channel. This result
enables the use of codes that can be more easily constructed.

For the case where both the main channel and the wire-
tapper’s channel are BECs, we have studied two approaches
for code design. The optimality and secrecy capacity of the
constructions need to be studied and explored.

For the case where the wiretapper’s channel is a BSC
(with error probability p) and the main channel is noiseless,
we have shown that codes with good error-detecting prop-
erties provide security. The capacity of this construction is
—log,(1 — p), which is less than the secrecy capacity h(p).
Capacity-approaching codes will probably be graph-based.
Use of graph-based codes for the BSC wiretapper’s channel
is a subject for future study.
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