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now be achieved for distribution of a cryptographic key. Qlsistems and similar protocols use classical error-
correcting codes for both error correction (for the honesties to correct errors) and privacy amplification (to make
an eavesdropper fully ignorant). From a coding perspecéivgood model for such a setting is the wire tap channel
introduced by Wyner in 1975. In this paper, we study fundamaldimits and coding methods for wire tap channels.
We provide a novel proof for the secrecy capacity theoremwioe tap channels and show how capacity achieving
codes can be used to achieve the secrecy capacity for antagviceannel. We also consider binary erasure channel
and binary symmetric channel special cases for the wiretemrel and propose specific practical codes. In some
cases our designs achieve the secrecy capacity and in dtiersodes provide complete security at rates below
secrecy capacity in some specific cases.
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On the application of LDPC codes to a novel
wiretap channel inspired by quantum key

distribution

I. INTRODUCTION AND MOTIVATION

The notion of communication with perfect security was defiie information-theoretic terms by Shannon [1].
Suppose a-bit messageM is to be transmitted securely from Alice to Bob across a pubhannel. Perfect
security is said to be achieved if the encoding\dfinto a transmitted wor is such that the mutual information
I(M; X) = 0. From this definition, Shannon concluded that Alice and Bobusd necessarily share bits of key
for achieving perfect security.

An alternative notion of communication with perfect setuvas introduced by Wyner [2]. Wyner introduced
the wire tap channel, which has matured into a system depiot€ig. 1. In a wire tap channel, the honest parties
Alice and Bob are separated by a channel C1 called the mameharlhe important modification when compared
to Shannon’s study of security is that any eavesdropper bBbgerges information transmitted by Alice through
another channel C2 called the wiretapper’s channel. C1 ghdr€ assumed to be discrete memoryless channels

(DMCs). Suppose Alice and Bob try to (securely) communicate-bit messageM across C1. Alice encodes

£ Alice X C1 Y Bob

Eve

Fig. 1. Wire tap channel.

M into ann-bit transmitted wordX. The legitimate receiver Bob and an eavesdropper Eve mégithrough
two different channels C1 and C2, respectively. Bob’s and'€webservations are denot&f and Z, respectively.
Alice’s encoding should achieve two objectives: (1) [S&glrZ provides no information aboWI, or the mutual
information I(M;Z) = 0 (2) [Reliability] Y can be decoded intdI with negligibly small probability of error.
Wyner showed that both objectives can be attained by fonwading without any key bits if the channels C1 and

C2 satisfy some conditions. The rdtén is called the secrecy rate.
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Secrecy capacity of a wire tap channel is the largest for which the objectives of secure and reliable
communication is achievable. Secrecy capacity is a funatibthe channels C1 and C2. If the capacity of C1
is greater than the capacity of C2, one would intuitively estpsecrecy capacity to be positive. This intuition has
been justified in several cases. Wyner [2] showed that if C2 @kegraded version of C1 (C2 is C1 concatenated
with another DMC) then secrecy capacity is positive. Gaisnid Korner [3] showed that the secrecy capacity is
positive for the cases when C1 is “less noisy” than C2. Ma[#Er[5] generalized this even further and was able
to conclude several very powerful results for a general G @8. Finding secrecy capacity of a general wire tap
channel still remains an unsolved problem. The most receagrpss in this problem was made by Van Dijk [6].

The key distribution problem in wire tap channels, whiclisfainder the general problem of key generation from
correlated source outputs, has been studied extensivglfp]4[7]. The objective of secure key distribution is for
Alice and Bob to share a commanbit key about which Eve’s entropy is maximal. In key distiiion, thek bits
can be unknown to Alice before transmission. Powerful idaah as common randomness, advantage distillation
and privacy amplification were developed in the context of @istribution over wire tap channels [7], [8]. Several
key distribution protocols have been developed and studieshy of the protocols make use of a parallel, error-free
public channel between Alice and Bob during implementation

The problem of developing forward coding schemes (with n@ltel channel) for secure communication over
wire tap channels has not received much attention. Some @garnf coding schemes have been provided in [2]
and [4]. A condition for constructing codes for the modifiedtermtap channel, introduced by Wyner [9], has been
studied by Wei [10]. Code construction methods and theinegtion to security have not been extensively explored
so far. However, existance of coding schemes for variougmgined wire tap channel scenarios has been proven
by several authors recently [11], [12], [13]. In particylre existance of coding methods based on LDPC codes
has been shown in [13].

In this paper, we focus on the problem of developing codifesees for secure communication across wire tap
channels. The paper is broadly divided into two parts. Inftiet part, we provide a novel proof of the secrecy
capacity theorem for certain wire tap channels. The novieltthe proof is that it separates the requirements of
security and reliability. We show an important link betwesapacity-approaching codes and security. The proof
also provides a clear construction method for coding sclsefmresecure communication across arbitrary wire tap
channels.

In the second part, we develop codes for three different tajpechannels. For a wire tap channel with a noiseless
main channel and a binary erasure channel (BEC) as the wipets channel, we provide codes that achieve secrecy
capacity using the threshold properties of codes on grapdsrumessage passing decoding. To our knowledge,
these are the first codes that achieve secrecy capacity oretap channels. We extend the constructions to wire
tap systems that have BECs as both the main and wiretappersel. The connections between the threshold of
LDPC codes under message-passing decoding and securitg@rgant new contributions of this paper. Finally, we
consider a wire tap channel with a noiseless main channehdnary symmetric channel (BSC) as the wiretapper’s

channel. For this case, we provide a coding solution usimgsdhat have good error-detecting capability.
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The rest of the paper is organized as follows: In the first (&etction 1), we present the novel proof of the
secrecy capacity theorem for wire tap channels. In Sectiprwke discuss the general coding scheme for wire
tap channels. In the next four sections of the paper (Set¥ievill), we present codes for the three specific wire
tap channels given above. Finally, we conclude in Sectiolh With a discussion of results and topics for future

research.

[I. CODING FOR THEWIRE TAP CHANNEL

In a general wire tap channel (Fig. 1), C1 and C2 are discremonyless channels (DMCs). The two DMCs
have the same input alphabet but different output alphdliets denotedX — Y, where X is a random variable
denoting an input symbol to C1, arid is a random variable denoting an output symbol from C1. Sirlyil C2
is denotedX — Z. A sequence ofV input symbols is denoted bV or X. YV andY, andZ" andZ have
similar notations for the outputs. C1 and C2 of a wire tap dehare called the main channel and wire tap channel,

respectively.

A. Secrecy capacity of the wire tap channel

The notion of secrecy capacity, as introduced by Wyner [8F &n operational meaning of being the maximum
possible rate of information transmission between Alicd Bob that still enables Eve to be kept totally ignorant.
Before defining the operational meaning precisely, we lootha calculation of secrecy capacity for a given wire

tap channel. The secrecy capacity for a general wire tap channel can be calculated as folloys [3

Co= max  [(V:Y) = I(V:2)], .

where the maximum is over all possible random varialifedn joint distribution with X, Y and Z such that
V — X — (Y, Z) is a Markov chain. The random variablé does not have a direct physical meaning; it is used
for calculation purposes. Note that €ould turn out to be zero or negative in some cases. At pretbentalculation
of secrecy capacity is an unsolved problem when C1 and C2erergl DMCs. However, the calculation of secrecy
capacity can be simplified for some special cases that impestections on the wire tap channel with respect to
the main channel.

If 1(V;Y) > I(V; Z) for all Markov chainsV — X — (Y, Z), the main channel is said to be less noisy than

the wire tap channel. If the main channel is less noisy thamwtine tap channel [3], then

Cszg)l{%f)[f(X;Y)—I(X;Z)]y )

where the maximum is over all possible distributid?g(x) of X. Moreover, as shown in [6](X;Y) — I(X; Z)
is a convex function ofPx (x) when the main channel is less noisy than the wire tap chaheeke, the secrecy
capacity can be calculated using convex optimization ndshtt was further shown in [6] that if (X;Y") and
I(X; Z) are individually maximized by the sam®x (x), and the main channeX{ — Y’) is less noisy than the

wire tap channel X — Z7), then

C, = Capacity X — Y) — Capacity X — 7), 3
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where Capacity(.) refers to the usual channel capacity.

B. Coding method

The coding problem for Alice in the wire tap channel invohagiding redundancy for enabling Bob to correct
errors (across the main channel) and adding randomnessépirig Eve ignorant (across the wire tap channel). The
coding method presented here is not new. It is present in thefein [2] and [3]. More recently, similar coding
methods have been used in [11], [12] for finding bounds anor éxponents in the context of wire tap channels.
However, our method of proof separates the requirementsaifriy and reliability and results in a simple design
method for codes over a wire tap channel.

Let us assume that Alice needs to transmit one oudfokqually likely messages i.e. a message denatés
such thatu € {1,2,---,M} and Prou = i} = 1/M. Alice usesM codesC;, 1 < i < M with |C;| = L
and block-lengthV. Each codeword of’; consists ofN symbols from the input alphabet of the main or wire tap
channel. We let the common input alphabet to the two charbee{d,2,--- , K'}. A symbol of the input alphabet
is denotedk. A messageu is encoded into a transmitted wosd as follows: x is chosen uniformly at random
from the codeC,,. The coding method is illustrated in Fig. 2. The transmithemid x , in general, belongs to the
overall codeC' = U;C;. The rate of information transmission from Alice to Bob (errhs of bits per channel use)
in such a setting is given byg, M/N. The receiver on the main channel (Bob) decodes a received ywavith
respect to the overall cod€ into a decoded message(say, by Maximum-Likelihood (MaxL) decoding). We let
the output alphabet of the main channel{ie2, - - - | .J,,,} denoting a symbol by,,,. The eavesdropper on the wire
tap channel is assumed to have unlimited power to proceseteived wordz. We let the output alphabet of the

wire tap channel bé1,2,---,.J,} denoting a symbol byj,,.

u Encoder X Main y a
Alice x € C, Channel Decoder Bob
Wire Tap
Channel
Z
Eve

Fig. 2. Coding method for the wire tap channel.

The objective of Alice and Bob in a wire tap channel can now verga precise definition. Let/, U, andZ

be random variables denoting Alice’s message, Bob’s detatessage, and Eve’s received word, respectively. Let
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H(V) represent the entropy of a random variableThen, the objective is to achieve the following:
Prob{U # U} — 0. (4)
I(U;Z)/)N — 0. (5)

The constraint (5) is referred to as the security constraihtle (4) is called the reliability constraint. If an ened
(as in Fig. 2) withRs = log, M /N satisfies the security and reliability constraints for aegiwire tap channel,

then such an encoder is said to achieve a secrecyFate

C. Security of the coding method

The security constraint is of paramount importance in theigeof an encoder for a wire tap channel. The
following choice of the code€’, satisfies the security constraint: Ea€h should approach capacity over the wire
tapper’s channel (similar to the special case considerédfyer in [2]). We present the criterion in the following
theorem (the notation used is from Fig. 2 and Section II-B).

Theorem 1. If each codeC,,u € {1,2,---,M} comes from a sequence of codes that approach capacity
asymptotically over the wire tap channel, thefU;Z)/N — 0, asN — oc.

Proof: See Appendix I. [ |
This fundamental connection between capacity-approgctinies and secrecy has been used in many works on
wire tap channels beginning with [2] implicitly. In Appemrdil, we show that this connection can be used to design
codes that approach the secrecy capacity of certain wirehttapnels. Particularly, we have shown that the reliability
condition can be satisfied while simultaneously forcingheeadeC, to approach capacity.

In summary, we have shown that secrecy capacity can be a&chiev certain wire tap channels using codes
that achieve capacity over the wire tapper's channel. Aiggmt drawback is that capacity-achieving codes are
essential for guaranteeing the security of the method.eSaapacity-achieving codes are not practical in many
settings, design of practical codes that are secure is aortarg problem that needs to be addressed. If the resulting
code is practical and secure, transmission rates belovesecapacity are certainly acceptable. The remainder of
this paper is concerned with developing practical codespmotbcols for wire tap channels. In some simple settings,

practical methods that achieve secrecy capacity are given.

IIl. CoDE DESIGN FOR THEWIRE TAP CHANNEL

In this section, we study the design and use of linear codes awire tap channel. We use a method that
was first introduced and studied by Wyner [2], [9] for two Sfieccases. We have extended Wyner’s study by

considering other wire tap channels. We have also providdekt) implementable codes for the cases studied by

Wyner.

A. Coding method

We consider a coding method similar to Fig. 2 but with lineades and cosets. To transmHbit messages, we

first select an, ) linear binary code” such thatk > n — [. Out of the2"~! cosets ofC, we choos&* cosets and
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let each message correspond to a chosen coset. The selefctien cosets is done in a linear fashion. SuppGse
is a generator matrix fo€ with rows g1, go, ---, andg;. We selectt linearly independent vectois;, hs, -- -,

andhy, from {0,1}™\ C. The coset corresponding tokabit message = [s1 s2 - - - si] is determined as follows:
s — sthy + sohy + -+ - + s hy + C. (6)

Though the above correspondence is deterministic, thedemg@rocedure has a random component in the selection
of the transmitted word. A-bit messages is encoded into a-bit word randomly selected from the coset @f

corresponding t®. Hence, the transmitted wordg, is given by
x = sthy + sohg + - + sghy +v1g1 + vege + -+ + gy,

wherev = [v1 vg - - -] is an uniformly randoni-bit vector. The overall encoding operation can be desdrieea

matrix multiplication. LetG* be thel x n matrix with rowsh;, hs, ---, andh;. Then,
G*
x=[sV]
G

Hence,x belongs to the codé€ with generator matrix

The goal of both the legitimate receiver and the eavesdrojsp® determines from their respective received
vectors. Restating the conditions of Section 1I-B, the giesif the code€’ andC should be such that (¥)can be
determined without error across the main channel, and @jyeavis equally likely across the wiretapper’s channel.
Guided by the results of the previous sections, we could sh@d as a capacity-achieving code over the
wiretapper’s channel. However, designing a cGtithat can be decoded across the main channel is still a cgallen
Moreover, capacity-achieving codes have not yet been dstratad in practice for many channels. In the following
sections, we look at some design approaches for some sini@d¢ap channels. The encoding method and notation

will remain the same for all cases.

IV. NOISELESS MAIN CHANNEL AND ERASURE WIRETAPPERS CHANNEL

We begin with the simplest possible wire tap channel withraaky erasure channel (BEC) as the wiretapper’s
channel and a noiseless main channel. This scenario is showig. 3. In Fig. 3, the wiretapper’'s channel has
been denoted BEQ — ¢) i.e. the probability of erasure in the wiretapper’s charigdl — ¢. The probability that a
bit is leaked to the wiretapper s This notation has been chosen for future convenience. Welgnote the wire

tap channel of Fig. 3 as EW{). Using (3), we see that the secrecy capacity of an EAVE
Cs=1—CapacityBEC(1 —¢))=1—-(1—-(1—¢€))=1—¢. (7)
The coding method across an E\T is illustrated in Fig. 4. In the figure§ is the random variable denoting

the k-bit message to be transmitted. The cadés chosen to be afn,n — k) code, and the cod€' is chosen to
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S | Alice X Y Bob
BEC(l —¢)
Z
Eve
Fig. 3. Wire tap channel denoted EW£].
S— Encoder X X S = HXT S—
Alice Bob

X: Randomly H: parity-check matrix ofC

seclected from BEC(l —¢)

coset of a cod&C

with syndromeS
Z

Eavesdropper

Fig. 4. Coding method.

be the entire vector spad®, 1}". The transmittech-tuple is denoted by the random variable= [X; X5 --- X,,].
Note that the messagtcan be seen as a syndrome(dfwvith respect to a carefully constructédk n parity-check
matrix H. Since the channel between Alice and Bob is error-free, Bottsfihe message as follows: = HX”

(mod 2). The secret information rate B = k/n. From (7), we see that for secure transmission,
R=k/n<1-—e (8)

Assuming that all messages are equally likely, we hae= 0 or X; = 1 with probability 1/2 each. The
eavesdropper learnX; with probability e. That is, the random variablé = [Z, Z,--- Z,] is such thatZ; = X;

with probability e, and Z; =? (unknown or erasure) with probability — .

A. Security Criterion

To develop a security criterion for the choice 6f we calculate the eavesdropper’s uncertaiftyS|Z) by

first evaluatingH (S|Z = z). Note that the eavesdropper is given complete knowledgaetbdeC and infinite

October 12, 2005 DRAFT



computational power. The main source of uncertainty is théumly random selection of the transmitted waxd
from the coset of”' corresponding to the messafe
If a coset ofC' contains at least one vector that agrees with {0, 1, 7}" in the unerased positions, we say that
the coset is consistent with Each consistent coset corresponds to a possible messatfe feavesdropper. Let
N(C,z) denote the total number of cosets @fconsistent withz. Since each message is equally likelyriori,
we get
H(S|Z = z) =log, N(C, z). 9

For an(n,n—k) codeC, the maximum possible value fo¥ (C, z) is the total number of cose®$. If N(C,z) =
2% we say that is secured by since the eavesdropper’s P{&h= s|Z = z} = 1/2 for every possible message
s. The following theorem (adapted from [9, Lemma 3]) state®addtion for a vectorz to be secured by a code
C.

Theorem 2 (Ozarow, Wyner '84): Let an(n,n — k) codeC' have a generator matri& = [a; - - - a,], wherea;
is thei-th column of G. Consider an instance of the eavesdropper’s observatien{0, 1, 7}™ with x unerased
positions given by{i : z; #7} = {i1,i2,--- ,i,}. z is secured byC iff the matrix G, = [a;, a;, - - - a;,] has rank
.

Proof: If G, has ranku, the codeC' has all2# possibleu-tuples in they unerased positions. So each coset

of C also has alR* possibleu-tuples in theu revealed positions. S&(C, z) = 2.

If G, has rank less thap, the codeC' does not have alk-tuples in they unerased positions. So there exists at
least one coset that does not contain a gixemple in theu unerased positions, amdl(C, z) < 2F. [ ]
If all possible random vectorg obtained over a BEQ — ¢) are secured with probability close to one by an

(n,n — k) codeC, ratek/n is achievable with perfect secrecy over an EWJT

B. Using duals of codes on graphs

We now study the use of the threshold property of codes onhgr&gr providing security over an erasure wire
tap channel. We illustrate the method using Low-Densitytir&heck (LDPC) codes. The extension to other codes
on graphs is shown in examples.

Consider a bipartite graph ensemll& (), p) with n left nodes and left and right edge degree distribution
polynomialsA(z) and p(x), respectively [14]. The adjacency matrix of a graph from émsemble provides the
parity-check matrix of a low-density parity-check (LDPQ)de. Let the threshold fo€™(\, p) over the binary
erasure channel be*()\, p). The threshold property has the following straight-fordvarterpretation:

Theorem 3: Let M be a parity-check matrix of an LDPC code from the enseniBlé), p). A submatrix formed
by selecting columns d#l independently with probabilityr will have full column rank fora: < a*(A, p) for large
k with high probability.

Theorem 3 enables the use of duals of LDPC codes as the €oaleer an EWT¢) as shown in Fig. 4. We let

a matrixM from the ensemble™ (), p) to be the generator matrix far'. By Theorem 3, the columns of the
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matrix M corresponding to the leaked bits over a BEG- ¢) will have full rank with high probability whenever
e < o)\, p). Note that the probability that a bit is leaked across a BEC¢) is equal toe. In combination with
Theorem 2, we see that the co@ewith generator matriXVl provides complete security with probability tending
to one for large block-length over an EWEJ with € < a* (A, p).

Example 1: The C™(z?%,2°) ensemble of(3, 6)-regular LDPC codes has threshald(z?, 2°) ~ 0.42. Let M
be an adjacency matrix from the ensemble with langgsay,n > 10°). M is ann/2 x n binary matrix with row
weight3 and column weight. The (n,n/2) codeC with generator matrix\/ can be used over an EWd) for
€ < 0.42 with perfect secrecy. The information rate between the kbparties in this case i® = 0.5 compared
to the upper bound of — ¢ = 0.58 (from (8)). (In practice, the value af could be reasonably lesser thad2 for
added security.)

The above argument can be extended to other ensembles o comdgraphs that have capacity-achieving
thresholds over the binary erasure channel. We illustfasemethod with the following example.

Example 2 (Tornado codes): A rate2/3 tornado code ensemble with threshéle: 0.33257 has been reported in
[15]. A parity-check matrix)/ for a code from the ensemble will have dimensian8 x n. The (n,n—2/3n) code
C' with generator matrix}/ can be used over an EWA) for ¢ < 0.33257 with perfect secrecy. The information rate
between the honest parties in this casfis- 2/3 = 0.66666... compared to the upper bound bf- ¢ = 0.66743.
Similar examples using the other classes of capacity-agbinog ensembles can be constructed. Hence over an
erasure wire-tap channel with wire-tap probabiktysecure information transmission rates tending to the wuppe
bound of 1 — ¢ are achievable using duals of codes on graphs that appragdcity over the binary erasure
channel.

Note that the cod€’ has properties that are opposite to the requirements oio&de&B. While we had proposed
to use a code that is capacity-achieving over the wiretéppbannel in Section 1I-B, we have used the dual of
a capacity-achieving code when the wiretapper’s channal BEC. In fact, using the dual appears to be a more
powerful method since security does not depend on capacltjeving codes. Both possibilities are worth exploring

in other wire tap channels.

V. EFFICIENTLY DECODABLE SECRECY CODES FOR NOISELESS MAIN CHANNEL AND ERASURE WIRETAP

CHANNEL SYSTEMS

We now talk about designing linear-time decodable secredes for the system shown in Fig. 3, where the
main channel is noiseless and the wiretap channel is a BE@elprevious section, we showed how to use dual
codes of LDPC codes to construct secrecy codes for thisreyéfthe cosets of a dual code of an LDPC code are
used to send secret messages.Ldie an LDPC code. Lef! be the generator matrix @ (i.e. the parity check
matrix of ), and H be the parity check matrix af'- (i.e. the generator matrix af). G is a sparse matrix since
C'is an LDPC code. As we discussed in the previous sectionsset cbC' is indexed by a secret messageand
the transmitted word is a randomly chosen word from that coset. ICéthave rater and letG* be the matrix

containing the rest of independent vector@1}™. In Fig. 5, we show the matric&s andG*. In Fig. 5, we also
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EAY)

V1

U2 T2

Un(14r) =
51 —

G * nr

Fig. 5. The encoding procedure

show how one can encode am-bit secret message. The bis; }7" are the secret bits, and the bits; ’f(l_”)

are chosen at randonjz; }} are the transmitted bits.
We now consider the decoding problem for Bob. SuppGskas rowsg:, gz, ---, andg, ). We selectnr
linearly independent rowhy, hy, ---, andh,,. from {0,1}"\ C. Let G* be the matrix with rows ah;, hs, ---,

andh,,.. Let the matrix[G*T, GT] be defined as,
[G*Ta GT] - [th; hZTa e ahn!‘T7 nga g2Ta e agn(lfr)T]'

Let W be defined adW = [S, V|7, whereS is the secret message, aMlis a random vector. The transmitted
word X is now given by,
X = [¢*T,GTIW. (10)

The decoding problem for Bob is to determiW& (or justS) from (10); this can be easily seen to beJén?)
operation.

We definedH to be a parity check matrix of the code" above. An equivalent way of finding is for Bob to
compute the syndrom& X. For a suitable choice off, one could haveSs = HX. However, sincel{ is a dense
matrix (in general), the complexity of this decoding is al@ly to be O(n?).

We now ask the following question. Is it possible to achigmedr or almost-linear decoding complexity for Bob
by carefully choosing a subset of the set of all the cosetSdtn other words, can we sacrifice some secrecy rate
to achieve linear or almost-linear decoding complexity Bab? As we will discuss later, our approach will be to
make some of the elements 8falways equal to zero. This will decrease our secrecy ratewbuwvill show that
almost-linear or linear time decoding becomes possibldat tase.

We first show that the decoding problem in (10) is similar te gnoblem of systematic encoding of linear block
codes. Let a linear block code have parity check makfixwhere H = [H;, H]. Let the transmitted codeword

be C = [m”, p]T, wherem is the message angl is the parity check part. Hence, to fing the encoder has to
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solve
—Hlm = ng (11)

(10) is similar to (11) ifX = —H;m, H, = [G*",GT], andW = p. In [14], the authors have shown how to
efficiently solve (11) for LDPC codes. As in [14], our apprbagill be to multiply (10) by a matrixQ to get

QX = Q[c*",GTIW. (12)

To make the operation of findingv from the above equatio®(n), we need to have the matr@[G*”, G”] in a

special form and we also need to ensure B3 is a O(n) operation.

G, n(r—t)

Fig. 6. Choosing a subset of the set of cosets

i
g —= H 1

T — n(l-1) / T

(1-r)

.
1

Sn(rt)
0

_h
8

== = ==

Fig. 7. The matrixHy

A. Choosing a subset of the set of cosets

Let G, be a sparse full row-rank matrix if0, 1} made up using the set of independent vector§0inl }™ but

not in G. Let G; have dimentions(r —t) x n. We show this in Fig. 6. LeP> be the matrix with rows as the rest
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1z

of the independent vectors i§0,1}". Let H* be defined as shown in the figure, and I&t be the parity check
matrix of an LDPC code’*. H* has dimensions(1 — t) x n. Hence,C* has ratet. It can be seen that, i/
corresponds to a Tanner graph with degree distribution (@it pc), andG; corresponds to a Tanner graph with

degree distribution pait\z, , pc,), then H* corresponds to a Tanner graph with degree distribution(pait, prr-),

where
Ji A @) Jy Aa(@)da ) A, ()da <AG( ) [ rea 306 [ oo ) )
and . L
Jo Aa(x)dx Jo Aay (z)dx

pr~(z) = pa(z). (14)

fol Ao (x)dx + fol A, (z)dx pe (@) + fol Ag(z)dx + fol A, (z)dx
We restrict the transmitted worK to be a linear combination of the rows in ory and G, i.e. all the vectors
in P are multiplied by zero. The secrecy code rate now fallg tot. It is important to note that this new secrecy
code will have the same security properties as the origiodecsince only the matri& determines the security

properties of the secrecy code.

n(l—t—0) ng

nf

51 X* vector

n(l—t—p) D i E

Tn(1-t

Fig. 8. The matrixH

1) Forming the matrix Hy: Let the codeC* have erasure threshoftlunder the standard iteratve erasure-decoding
algorithm. Hence, any submatrix formed using a set@fcolumns of then x n matrix in Fig. 6 (i.e. includingz,
G and P) will have full column rank (asymptotically). By perfornmgnsome row and column permutationsaGh
G, and P, we can get an approximately upper triangular fornih. Note that, after row and column permutations,
we need to rearrange thebits, s-bits and ther-bits. To keep the notation simple we will still call the firstl — )
bits v-bits and the nexk(r —t) bits ass-bits with the understanding that Bob now will possibly h&vdind some
or all of the bits in not onlyS, but also inV. After the row and column permutations we continue to cadl th
matricesG, G; and P by the same names.

Now, consider Fig. 7. The matrik/; is obtained by retaining thes columns in the approximate upper triangular
form and by choosing:(1 — ¢ — ) other columns in such a way so th&t has full column rank in the column

space ofG and Gy. Thus, H; will have full column rank in the fulln x n matrix (G, Gy, and P) as well.
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2) Forming the matrix H: In Fig. 8, we show the matrix/, which is obtained by rotating the matrii{; in
Fig. 7 by 90 degrees clockwise. Note that, mattixis not the generator matrix of the codéor the parity check
matrix of C+. We will now basically follow the steps described in [14]. [4], the authors described how to
encode LDPC codes linearly or almost-linearly. The equattmat needs to solved eficiently in order to encode
LDPC codes is (11).

As shown in Fig. 8, the matri¥/ can be divided into matriceB,7’,D and E as in [14] (the difference being
that we do not have matrice$ andC) with dimensionsG x n(1 —t — ), n8 xng, n(l —t — ) x n(1 —t — ()
andn(l —t— ) x nf respectivelyT is a lower triangular matrix. Also, note that, we have regdionlyn(1 — ¢)
values in theX vector on the right hand side. Sinéé has full row rank (becaus#; in the previous section had
full column rank),n(1 —t) x-bits are enough to find out thebits and thes-bits. We call this new vectaK* (Fig.
8).

nj n(l—t—p3)

ET-1 i I n(l—t—p)

Fig. 9. The matrix@

3) Multiplying by the matrix Q: As in [14], we multiply both sides in Fig. 8 by the matrix Q showm Fig. 9. The
result is shown in Fig. 10. The result of the multiplicatiointiee matrix Q with the matrix H can be precomputed
before the actual decoding begins. We now talk about theipfiodtion of the matrix Q and the vectdX* to
get the vectorY. We need to show that this multiplication @3(n) since we need to do this operation for every
receivedX.

We now turn to Fig. 11, where we have broken the vectdrsandY into vectorsXj, X% and Yy, Y2

Y
Y2

ns3

51 Y vector

‘
‘

n(l—t—f) ! 0
| Yn(1-1)

Fig. 10. The vectorY’
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X7 vector
Y, vector

nf n(l—t—p) i A
— — T2 Y2
! | nfs
nf I | 0
-1 ! | 1-t-3
n(l—t- ) ET I I I | " )
: T(1_ Yn(1-t
Q matrix Pl
X* vector \ \ Y, vector
X3 vector

Fig. 11. The multiplication of Q an&X*

respectively, as shown in the figure. VectdX§ and Y, have dimensions:3 x 1. Vectors X* and Y2 have
dimensionsn(1 — ¢t — 3) x 1. Clearly, the vectordy'; andXj are equal. Henc€y; can be computed in linear

time. We now turn to computation df . Let

ET'X; =Y3
, and hence

Y3 + X5 = Yo.

Clearly, 71X can be computed using backsubstitutiorCifiz) time, and the multiplication of this result arid
is alsoO(n). Since the adition oY3 and X3 is linear time, we have shown that the generatiof¥ofrom Q and
X*is O(n).

4) Solving for vectors S and V: We now turn to Fig. 10. Let the first(1 — ¢ — 3) elements of the vector in
the left hand side of that equation be denotedlUby and the next S elements be denoted By,. We show this

in Fig. 12. We now need to solve fdf; andUs to find outS andV. The equations we need to solve are,
BU; +TU, = Y7y, (15)

and
(ET'B+ D)U; =Yg, (16)

whereY; andY- are as defined before (in Fig. 11). Solving the second equétist, we get
U, = (ET'B+ D) 'Y.,. (17)

This multiplication, in general, is naD(n), since(ET !B + D) is not sparse anymore. The complexity of this
multiplication isO((1 — t — 8)2n?).
Now, we have, from (15),
TUz =Y+ BU;.
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Since B is a sparse matrixBU; can be computed in linear time, and th&l can be solved irO(n) time by

backsubstitution sincé&’ is a sparse lower triangular matrix. Note that, if
ﬁ =1- ta

then the complexity of the whole decoding operation reduce®(n). Hence, if the codeC* is a capacity-
achieving erasure-correcting code, then linear time degod possible. As we will discuss in the next section, this
is a sufficient condition but not necessary. We now concliitedection with an example of an almost linear-time
decodable secrecy code.

Example 3: Let C' be a(3,6)-regular LDPC code with block-length. G matrix is the parity check matrix of
C (i.e. the generator matri€' ). C has rater = 1/2. The matrix(G; is chosen to be the parity check matrix of
a (2,6)-regular LDPC code. Then the cod& is an LDPC code with all variable nodes having degsesnd all
check nodes having degrée C* has ratet = 1/6. The LDPC codeC' has an erasure threshald= 0.42. The
codeC* has an erasure threshqlid~ 0.55. Thus, the secrecy rate is— ¢t = 1/3, and the decoding complexity is
O(n+n2(B— (1 —1))?) = O(n + 0.08n2). The transmitted message is secure across the wiretap ellzaring

erasure probability at leagt — o)) = 0.58.

B. Linear time decodable secrecy codes

We now talk about linear time decodable secrecy codes. Asawersthe previous sections, a sufficient condition
for the secrecy code to be linear-time decodable is thatdde €* in Fig. 6 (with parity check matrix{*) should
be a capacity achieving code on a binary erasure channebsohih row gap inH* (i.e. (1 —t — f3)) is zero. The
authors in [14] have shown that the row gap can also be caézlilasing the erasure threshold of the transpose
of the parity check matrixf/*). The transpose off * does not correspond to a non-zero rate code. Nevertheless,
the greedy algorithm that is used to get approximate trikatigun in £* can also be thought to be the standard
iterative erasure decoding algorithm operating on thesprase of*. Let H* has degree distributiof\ g+, pr),
where) - andpg+ correspond to the variable and the check side respecivegn,Tthe transpose d@f * will have
a degre distributioripy+, A+ ). They showed that the row gap obtained is thien- ¢ — ), whered is the erasure
threshold of the degre distribution pdipz-, A+ ). It turns out that, many of the known degree distributions of
good LDPC error corecting codes over some channels actalsiyallow linear time encoding (i.€1 — ¢ — ¢) is
zero).

In the following example, we will use this idea to construdezrecy code that allows linear-time decoding (and
encoding sincex, G in Fig. 6 are sparse anyway). We will not talk about the deglis&ibution of the edges,
since some matrices may have a few degree zero variable imodas example. For a code with degree distribution
(\, p) (where) andp correspond to the variable and check side degree diswitmitf the edges), let(x) denote
the degree distribution of the variables. #(w), the coefficient ofx?, v;, is the fraction of variable nodes with

degreei. Clearly,
~ J Max)da

v(@) fol Az)dz

(18)
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U, vector

Y

. ] Y2
Sn(r4t)

ng

T~

s Y vector
S$1

n(l—t—p) ! 0 —

Yn(1-t)|

U, vector

Fig. 12. Solving forU; and Uz

Example 4: We go back to Fig. 6. Let the cod€ (with parity check matrixG) have degree distributions
(Ag, pa), where g (x) = 0.6087x + 0.3913z2%, and pg(z) = 5. Thus, the variable degree distribuian; (z) =
0.7z + 0.323. Let the matrixG; correspond to the parity check matrix of a code with degrestriditions
(va,, pa, ), Wherevg, (z) = 0.7 + 0.3z, and pg, () = 2. Hence, the degree distributons Bf* is (Ag-, pr+),
where Ay« () = 0.37692 + 0.48462% + 0.13852°, and pg-(z) = 2°. The rate of the secrecy code then is
r(Aa, pa) —r(vg-, pu+) = 0.0429, wherer denotes the rate of the corresponding LDPC code. Hence eovecy
rate has dropped 1©.0429 from 1 — (1 — r(\g, pc)) = 0.6714. The erasure threshold 6f turns out to be).2625.
Hence this code is secure on a wiretap channel with erasatapility at least{1 — 0.2625) = 0.7375 (i.e. secrecy

capacity is0.7375). This secrecy code is linear time decodable.

VI. ERASURE MAIN CHANNEL AND ERASURE WIRETAPPERS CHANNEL

In this section, we consider wire tap systems where both tire tap channel and the main channel are binary
erasure channels (BEC). Though our results apply with alsmadification to systems with DMCs other than the
BEC as the main channel, we restrict ourselves to the BEC foassase of explanation.

With a BEC as the main channel, the wire tap system is as show#igure 13. The wiretapper’'s channel is a

S [ an X Y
= Alice BEC(,,) Bob

BEC(e,,)

Eve

Fig. 13. The BEC wire tap system
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BEC with erasure probability,,, and the main channel is another BEC with erasure probabjljit According to

(3), the secrecy capacity of this system(s = ¢,, — ¢,,,, Which is positive whenevet,, > ¢,,.

A. Using duals of codes on graphs

As in the noiseless main channel case, we consider usingudleofian LDPC code as the codéfor encoding.
Using Theorem 3, security across the wiretapper’s chararebe related to the threshaidof the LDPC codeC'*
over erasure channels. Specificallylif ¢,, < «, perfect security is guaranteed with high probability.

We now turn to the probability of error on the main channelpise we could design the matiiX* such that
the overall codeC' still belongs to an LDPC ensemble with threshglaver erasure channels. Bob can decade
(and hence the messagewith asymptotically zero probability of error whenewgt < 5.

In summary, the requirement on the LDPC cadas that it should contair®, the dual of another LDPC code
C*. Since the dual of an LDPC code is likely to have a signifigahthh number of low-weight codewords, the
requirement appears to be contrary to intuition. A very Eim¢ode design problem arises in the construction of
guantum error-correcting codes using sparse graphs [f@r Atudying several constructions, the authors of [16]

conclude that such codes are difficult to construct and alikaelyrto have high thresholds.

B. Using capacity-achieving codes
We now consider a coding method that will eventually depem@dapacity-achieving codes for complete security.
We first pick an LDPC codé€’; of lengthn from an ensemble of codes having asymptotic erasure tHoespo
That means, as — oo, C recovers all the erasures on an erasure channel with erpsalvability up to at least
€w, Using the standard iterative erasure decoding algoritteh(C; have rater;, and let H, be the parity check
matrix of the codeC’;. Next we pickn(1 — r3) independent vectors from the dual spaceCef wherer; < rs.
Let H, be the matrix formed by these vectors as rows. has dimensiong(1 — r9) x n. Let ‘H5 be the rest of
the independent vectors in the dual space’ef As we will see shortly, we must hawg, > (1 — r2) in order
to guarantee some equivocation for Eve. I8t be the parity check matrix of a cod&,. We wantCs to have

asymptotic erasure threshalg,. We then have,
1-— T2 2 €my (19)

and
1—71 > €. (20)

Let (A, p) denote the degree distribution of an LDPC code. Let

Az) = Z Nz ™h (21)
i>1
and
plx) = Zpiz‘i*l. (22)

i>1
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For alli, \; andp; are non-negative\;(p;) denotes the probability that a randomly chosen edge in &n@dr graph

of the code is incident on a variable(check) node of degrde our examples, we will construdf, by picking

n(1 — ry) rows of Hy, and the rest of the rows will be ifl,. It is then easy to see that, If, corresponds to a
Tanner graph with degree distribution pai,(p-), and H, corresponds to a Tanner graph with degree distribution

pair (\2, 7,), then H; corresponds to a Tanner graph with degree distribution @airp;), where

M (2) = ! Ao (x o (z)dx + Moz Ao (x)dx 23
fol A1 (z)dx fol Ao (z)dx fol Ao (7)dw ( ( )/ (@) ( )/ (@) ) 7 (23)

and 1= 1
() = 02Oy @A o (24)

3 Ao (@)da + [ No()dar oy Aa(@)da + [ No(a)da

We have to choosé\;, p1) and (\2, p2) in such a way so that for ail, \»; andp,; are non-negative.

n(l —ry) H, 0

n(re —r1) H, S

Fig. 14. The encoding procedure

We now discuss the encoding procedure. The encoding proe@dthis case is a little different than the encoding
procedure when we had a noiseless main channel. Here, Algtetidkes an(r. — r1)-bit long message vect@,
and forms an(1 — r1)-bit long vector by adding:(1 — r2) 0’s on top of S. She now chooses aK at random
from the solution set of the equation shown in Figure 14 aadgmits it. We illustrate this encoding procedure in
Figure 15. Note that, the number of solutions to the equafityX = 0, is 27~ "(1-72) = 2772 However, for some
particular choice 0B, sayS;, the number of solutions to the equation shown in Figure 12pig*(1=71) = gnr1,
Obviously, the sam& cannot be a solution for two different values®fThis explains the splitting of the solution
set space of the equatidii, X = 0 into g—f = 2n(r2=m1) disjoint subsets, each corresponding to a different value
of S. Hence the rate of our code (8, —r1). The interesting point to observe in Figure 15 is that we arteusing
the whole space of0, 1}, unlike in the previous sections.

1) Equivocation across the wire tap channel: In this section, we calculate the equivocation for Eve. 8igve’s
channel is a BEC with erasure probability, with probability tending to 1, Eve will havee,, erasures as — oc.

If we havee, > (1 —ry), using HoX = 0, Eve must have at leagt*(»~(1=72)) solutions forX, all of which

are equally likely. All these solutions will differ from elamther in the erased positions. Singg is the erasure
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solution set ofH,X =0

'

solution set of Figure 14
forS =S,

solution set ofH,X = S,

solution set of Figure 14
forS=S;

solution set of H,X = S;

Fig. 15. The encoding space

threshold of the code having; as the parity-check matrix, any submatrix formed usirag columns of H; will
have full column rank [14]. Thus every solution &f>;X = 0 will give a different value ofS, all of which are
equally likely. The equivocation for Eve is theh = n(e, — (1 — r2)). If H; is the parity-check matrix of a
capacity-achieving code on an erasure channel with ergsol&bility e,,, A = n(ro — r1), and the message will
be completely secure from Eve. Clearly, if the erasure gribaof Eve’'s channel goes up, Eve will still have at
least this much equivocation.

2) Probability of error on the main channel: When Bob receives a vectd’, he first decodes it by using the
standard iterative erasure decoding technique for LDP@<aah the Tanner graph of the codg. Let the erasure
probability of the main channel be at mast. Then, asn — oo, with probability tending tal he will be able to
recover the transmitted wori. Bob then can find out the produgf, X, which is his estimate of the message

Example 5: Let Cs be a(3,6)-regular LDPC code with block-length. Hence,\x(z) = 22 and pa(z) = 2°.
Cy has ratero = 1/2. The codeC is chosen to be another LDPC code with all variable nodesnigasiegrees
and all check nodes having degréeHence,\;(z) = z* and p;(x) = 2. C; has rater; = 1/6. It can be seen
from (23) and (24) that)s(z) = = and p,(z) = 2°. The LDPC codeC, has an erasure threshald = 0.42.
The codeC; has an erasure thresholtt ~ 0.55. Thus, the secrecy rate is —r, = 1/3, and an equivocation
of n(8* — (1 — r2)) = 0.05n is guaranteed across the wiretap channel having erasubalglity greater than
(* = 0.55. Bob can decode the message with asymptotically zero pilgpaif error on the main channel having

erasure probability at most* = 0.42.

C. Remarks

We have shown that codes on graphs provide secrecy in enagertap channels with maximum possible secure

information rate. The codes are efficiently implementahbl@ractice.
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VII. NOISELESS MAIN CHANNEL AND BSCWIRETAPPER S CHANNEL

In this section, we consider a special case of a wire tap aHanhere the eavesdropper sees a binary symmetric

channel (BSC) with error probability, denoted BSG(). The main channel is error free. Using (3), we see that
C; = 1 — CapacityBSC(p)) = 1 — (1 — h(p)) = h(p), (25)

whereh(z) = —zlogy z — (1 — z)logy (1 — ), 0 <2 < 1.

The wire tap channel and the encoding is shown in Fig. 16. Tathod of coding is illustrated with the same

S Encoder | X X
Alice G Bob
A"
Random bit
Generator BSC(p.,)
Eve| Z

Fig. 16. Coding for a BSC wiretapper’'s channel.

notation as Section Ill.

A. Security across a BSC wiretapper’s channel

We let C' be an(n,n — k) code andC' be the entire spac€0, 1}". For an arbitraryk-bit messages = s, the
transmitted wordX € sG* + C'. Since the cosets df' cover the entire space aftuples, Eve’s received vectdf
belongs to some coset 61, sayuG* + C. If e denotes the error vector introduced by the BG( the wiretap,

we have forl <i < 2F,
Prob{Z € uG* + C|S = s} = Proble € (u+s)G* + C} = Prob{e € w + C'} for somen-tuple w. (26)

We can now state the criterion for selecting the cétieo guarantee security of the mess&jave choose” such
that for anyn-tuple w, we have
Proble ¢ w + C} ~ 27, (27)

Using the above condition in (26), we see that Eve is equélllglyl to find Z in any coset ofC' given any
messageS = s. Assuming allS = s are equally likelya priori, Prob{Z € uG* + C} is independent ofi; hence,
Prob{S = s|Z € uG* + C} ~ 27%, and perfect security is guaranteed.

The LHS of (27) is the probability of the coset + C. This probability was first studied by Sullivan [17]
and further extended by Ancheta [18], [19]. The followingults can be extracted from their studies: (1) The
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requirement of (27) that the probabilities of a code £ 0) and a cosety # 0) should be approximately equal
can be achieved for large block-length. (2) The propertiethe dual of a code plays an important role in the
probability of a coset. We expand on these two results in # sections to design codes for the BSC wire tap

channel.

B. Choosing the code C": Security criterion

Using the MacWilliams identities [20, Page 127] for the n — k) linear codeC', we get

—wi(e . 1 & n—i i
S g — Q_kZA;(x+y) (@ —y), (28)
1=0

ecC

where A/ is the number of codewords of weighin the dual code’s-. Usingz =1 —p, y = p, and A}, = 1 in
(28), we get
prt(e)(l _ p)nfwt(e) _ 2716 4 2716 ZA;(]_ _ 2p)l

ecC i=1
Using the MacWilliams identities [20, Page 137] for the d¢oset C, we get

Z 2" wit( e)ywt 2k ZA/ !E+y n i({E _y)i’ (29)
eew+C

where

Aj(w) = ai(w) — Bi(w) (30)
with «;(w) equal to the number of codewords of weighh the dual code”;- orthogonal tow, and 3;(w) equal
to the number of codewords of weighin the dual code”s- not orthogonal tow. Usingz = 1 — p, y = p, and
Ay(w) =11in (29), we get

Z pwt(e)(l _ p)n—wt(e) 2= k 4+92- k ZA/ 1 _ 2p (31)
ecw+C

From (30), we see thdid;(w)| < A;. We now state the main security criterion as a theorem.
Theorem 4: If

> A(1-2p)' ~0, (32)
=1
then Prolje € w + C} ~ 27* for all n-tuplesw.
Proof: Since|A(w)| < AL, we get

13" Alw) (1 - 2p)'| < D Al(1 - 2p) 0.
i=1

i=1
Hence,

|ZA’ )(1 = 2p)’| = 0.

That implies that the second term in the RHS of (31) can beeosgd with respect to the first terat*, and the
proof is complete. u

The criterion for the selection af is that the dualC* should have a weight distribution that satisfies (32).

October 12, 2005 DRAFT



a4

C. Some code constructions

We provide some examples of codes that satisfy the requireoig32).
Example 6: (Single parity check codes) The dual of(a,n — 1,2) single parity check code is th@:, 1,n)
repetition code with weight distributiod(, = 1 and A/, = 1. Hence,
> A(1—2p) =(1-2p)" =0
=1
for large n. However, the secrecy rate'n — 0 for largen. This is an example that was first used by Wyner in
[2] to motivate coding over a wire tap channel.
Example 7: (Hamming codes) The weight distribution of the dual of fhe= 2™ — 1,n — m, 3] Hamming code

Hm is Ay = 1 and A, ), =n. Hence,

ZAQ(l —2p) =n(1 — gp)(n+1)/2 ~0
i=1

for largen. As in the previous example, the secrecy rate tends to zeriarfge n.

The following theorem generalizes the above constructiethod.

Theorem 5: Let {C,,} be a sequence dfn,n — k,,) codes such that Pr¢Detection Errof< 27%~ over a
BSC{), 0 < p < 1/2 andlim,,—.o{kn/n} <log,(1/(1— p)). Let A; be the number of codewords of weighin

the dual codeC(Ln). Then for anyn-tuple w,

ZAQ(I —2p)" — 0, asn — oc.

i=1

Proof: We are given that for the codg,,,

Prob{Detection Errof = Y p©(1 — p)n W) < 27k,
e€C(n);e#0

Adding (1 — p)™ to both sides and using the MacWilliams identities, we get

D PO =) =R TR R AL - 2p) < (1 p)" 27
EEC(n) =1

or
ZAi‘(l — 9p)i < 2k (1 — pyn = gnlkn/n—loga(1/(1-p).
1=1
Sincelim,, oo {kn/n} < log,(1/(1 —p)) and the LHS above is nonnegative,
ZA;(l —2p)* — 0, asn — oo.

i=1
|

The existence ofn,n — k,,) linear codes with probability of detection error less tiart is well known [21,
Section 3.6]. Suppose we find a class of such error detectidgscsuch that

kn
R= lim —.

n—oo 1N
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Then, for largen, the codeC',,), when used as the codéover a wire tap channel with a B$&) as the wiretapper’s
channel, provides perfect security wheney®&r — log,(1 — p), or p > 1 — 2~ %, The maximum possible secrecy
rate that can be achieved by this construction is therefoke, (1 — p).

Codes such as Hamming codes and double error-correcting 8flds are examples of such error-detecting

codes. However, most known class of such codes tave0.

VIIl. CONCLUSION AND DISCUSSION

In this paper, we have studied the construction of codes ghatide security and reliability over a wire tap
channel. Our general construction uses codes that appcagetity over the wire tapper’s channel. We have shown
that this approach achieves secrecy capacity when the aprettannel is made of symmetric DMCs. Other cases
require a closer study.

A drawback of using capacity-achieving codes is that they difficult to find and construct except in some
special cases. One such special case is when the wire tapathama binary erasure channel. Hence, codes such as
optimized Tornado codes can be used across erasure wieesppannels as described above. However, we have
shown that capacity-achieving codes are not necessarysitcde. If a code exhibits a threshold behavior across a
BEC (codes such as regular LDPC codes), its dual can be uBsdiedly over a wire tap channel with a BEC as
the wiretapper’s channel. This result enables the use oésctitat can be more easily constructed. Extending the
connections between codes that exhibit a threshold phemama&nd secrecy over a general DMC is an important
area of future work.

When the wiretapper’s channel is a BEC and the main channeisgless, we have presented codes that approach
secrecy capacity. To our knowledge these are the first andswth codes.

For the case where both the main channel and the wiretapgrermel are BECs, we have studied two approaches
for code design. The optimality and secrecy capacity of testructions need to be studied and explored.

For the case where the wiretapper's channel is a ®5@nd the main channel is noiseless, we have shown
that codes with good error-detecting properties provideisty. The capacity of this construction islog, (1 — p),
which is less than the secrecy capaditfp). Capacity-approaching codes will probably be graph-bakkse of
graph-based codes for the BSC wiretapper’s channel is &cutgr future study.

APPENDIXI

PROOF OFTHEOREM 1

Since eaclC,, approaches the capacify,, of the wire tapper’s channel, we have for any 0 an N, such that
for N > N, I(X; Z|U = u)/N > Cw — ¢ for eachu. Therefore forN > N, I(X; Z|U)/N > Cw —e.
Expanding/ (Z; UX) in two ways, we get

I Z,UX)=1U; 2)+ 1(X; Z|U) =1(X; Z2) + I(U; Z| X).
SinceU — X — Z is a Markov chainI(U; Z|X) = 0. Therefore forN > N. we have

I(U; Z)/N = I(X;Z)/N — I(X; Z|U)/N < Cy — (Cw — €) = e.
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APPENDIXII

EXISTENCE OF RELIABLE ENCODERS

In this section, we determine a random coding bound on thbatibty of error ProjU = fj} in a manner
following Gallager [22, Section 5.6]. Let be a vector ofN input symbolsy a vector of N main channel output
symbols, andz a vector of N wire tap channel output symbols. L& (y|x) and Sy(z|x) be the transition
probabilities for the main channel and wire tap channepeesvely. LetT Sy (y, z|x) be the joint distribution.

We now define a random code ensemble for the coding method atio8dl-B. Let Qn(x) be an arbitrary
probability assignment on the set of lengthinput sequences. A set af L words is chosen pairwise independently
from the set of lengthV input sequences according @y (x). The words are arranged in &d x L array indexed
by a pair of coordinates € {1,2,--- ,M} andv € {1,2,---, L}; each word is denotes,,, wherem = (u,v).
Each row is considered to be the co@g i.e. C\, = {x,,y : m/ = (¢, v');u' = u}.

Let us assume that a messageas to be transmitted by Alice. Let us further assume that tloedwx,,, with
m = (u,v) is chosen for transmission frof},. Lety andz be the received vectors for Bob and Eve, respectively.
We will upper bound the probability of an eveht, which captures both the security and reliability constisi
The eventE is the union of the following two events:

1) EventA,,: anx,, form’ = (¢/,v") # m = (u,v) with u # «’ is chosen in the code such tH8¢ (y|x,./) >

Tn(y|xm). This event captures the reliability requirement.
2) EventB,,: anx,, for m’ = (u,v") # m = (u,v) is chosen in the code such th&; (z|x.,,/) > Sn(z|xm)-
This event captures the security requirement.

The probability of E averaged over the ensemble for the= (u,v)-th word is

o= 33 S Qu ) TSy 2l PHElm. .0, y. 7} (33)

y
Using a modified union bound,
P1 P2
PH{E|m,xm,y, 2z} < Z Pr{Am } + Z PH{ B, } )
uFu’ u=u' ,v#v’

for 0 < p1, p2 < 1. Now,

P{An} = > QN (Xm’)

X TN (Y [X0/ ) 2 TN (Y% )

TN Y| )%
< ZQN Ty o)™ , 51> 0.
Similarly, .
PH{B,.} < ZQN 751\[(;)';{)) , 59> 0.
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Using the simplifications in (33),

+ZZZQw<xm>TsN<y,z|xm L-) Y antr) lx)) ]
= (M-prLny [Z Qv (Xm) T (y[%)'~ ”1 lz Qn(x) Ty (y]x)* 1

y Xm

+(L —1)r2 Z lZQN Xm) SN (z]x)1 52'”2] [ZQN VSN (z|x)® 1 .

z

Using s; = 1/(1 4+ p;), we get a version of Theorem 5.6.1 in Gallager [22]. Follayviballager [22, Section 5.6]

further for the case of discrete memoryless channels, we let

N
=[] @),
n=1

where the input vectox = [z1 x2---xy] In terms of its components, an@(k), k& € {1,2,---, K} is an
arbitrary probability assignment on the input alphabehiBirly, we letTy (y|x) = ]‘[ff:l T (yn|z,) andSy (z|x) =

]‘[ﬁlv:1 S(zn|zy). Converting to exponential relationships, we get
Pg . < exp{—N[E1(p1,Q) — p1R1]} + exp{—N[E2(p2, Q) — p2Ra]}, (34)

where ML = eNF1; [ = ¢NE2:

Eq (Pl, Q)

Jm K 1lp1
4%<Z[ZQWHmwwmﬂ );md (35)

Jm=1 Lk=1

1]p2
Es(p2,Q) = —log (Z [ZQ S(jw|k) 1/ 1+P2)‘| ) . (36)

Jw=1 Lk=1
Note that the secrecy rate of a code from the ensembfe is Ry — R». Using a distribution R} in (34), we
get
Pp <exp{—=N[Ei(p1,Q) — p1Ral} + exp{—N[Ea(p2, Q) — p2Ro]}, (37)

The random coding exponent for the wire tap channel is defasefbllows:

Ey(R2) = [nax mgX[Ez(P% Q) — p2Ra]. (38)

Let 2 be the distribution on the input symbols that maximizes #redom coding exponert,,(R2). To satisfy
the security constraint of Section 1I-C, we restrict ouwsslto ensemble of codes with input symbol distribution

Q2(k). We can now define another random coding exponent for the ofannel as follows:
En(Ri) = max [Ei(p1,Q2) — prRa].

0<p1<1

Using the random coding exponents in (37), we get the foligutheorem.
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Theorem 6: For an ensemble of codes using the maximizing distribu€ln

PE,m

IN

exp{[=NEpn(R1)]} + exp{[-NEy(R2)]};

Pg

AN

exp{[=NEp(R1)]} + exp{[-NEy(R2)]}.

We know thatE,,(R2) > 0 for 0 < Rs < C,, where G, is the channel capacity of the wiretapper’s channel.
Hence, Theorem 6 says that there exists a code in a suitabmbite such that the security constraint can be
satisfied (eaclC, can approach capacity on the wire tapper’s channel) withtrarip accuracy by increasing the
block-length; at the same time, the same code can satisfyetiadility constraint with arbitrary accuracy provided
the rateR; is such thatF,,(R;) > 0. From the properties of random coding exponents [22, Se&i6], we see
that £,,(Ry) > 0 if

<

~ Qa(k)SGulk) log %

Hence, the maximum secrecy rate achievable by a code frorartsemble id(Q-2; S) — C,,. We immediately see

]~

R1 < I(QQ,S) =

~
Il

1

<.
Il

that for the special case of a wire tap channel considere®)irs€crecy capacity is achievable by some code in
the ensemble. In particular, if both the main channel an@ wapper’s channel are symmetric, secrecy capacity is

achievable.
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