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Abstract

With the advent of quantum key distribution (QKD) systems, perfect (i.e. information-theoretic) security can

now be achieved for distribution of a cryptographic key. QKDsystems and similar protocols use classical error-

correcting codes for both error correction (for the honest parties to correct errors) and privacy amplification (to make

an eavesdropper fully ignorant). From a coding perspective, a good model for such a setting is the wire tap channel

introduced by Wyner in 1975. In this paper, we study fundamental limits and coding methods for wire tap channels.

We provide a novel proof for the secrecy capacity theorem forwire tap channels and show how capacity achieving

codes can be used to achieve the secrecy capacity for any wiretap channel. We also consider binary erasure channel

and binary symmetric channel special cases for the wiretap channel and propose specific practical codes. In some

cases our designs achieve the secrecy capacity and in othersthe codes provide complete security at rates below

secrecy capacity in some specific cases.

A. Thangaraj is with the Indian Institute of Technology, Madras

A. R. Calderbank is with the Department of Electrical Engineering, Princeton University

S. Dihidar, S. McLaughlin, and J.-M. Merolla are with the GTL-CNRS Telecom lab, Metz, France

October 12, 2005 DRAFT



1

On the application of LDPC codes to a novel

wiretap channel inspired by quantum key

distribution

I. I NTRODUCTION AND MOTIVATION

The notion of communication with perfect security was defined in information-theoretic terms by Shannon [1].

Suppose ak-bit messageM is to be transmitted securely from Alice to Bob across a public channel. Perfect

security is said to be achieved if the encoding ofM into a transmitted wordX is such that the mutual information

I(M;X) = 0. From this definition, Shannon concluded that Alice and Bob should necessarily sharek bits of key

for achieving perfect security.

An alternative notion of communication with perfect security was introduced by Wyner [2]. Wyner introduced

the wire tap channel, which has matured into a system depicted in Fig. 1. In a wire tap channel, the honest parties

Alice and Bob are separated by a channel C1 called the main channel. The important modification when compared

to Shannon’s study of security is that any eavesdropper Eve observes information transmitted by Alice through

another channel C2 called the wiretapper’s channel. C1 and C2 are assumed to be discrete memoryless channels

(DMCs). Suppose Alice and Bob try to (securely) communicatea k-bit messageM across C1. Alice encodes

Alice X

Eve

C2

C1 Bob

Z

YM

Fig. 1. Wire tap channel.

M into an n-bit transmitted wordX. The legitimate receiver Bob and an eavesdropper Eve receive X through

two different channels C1 and C2, respectively. Bob’s and Eve’s observations are denotedY andZ, respectively.

Alice’s encoding should achieve two objectives: (1) [Security] Z provides no information aboutM, or the mutual

information I(M;Z) = 0 (2) [Reliability] Y can be decoded intoM with negligibly small probability of error.

Wyner showed that both objectives can be attained by forwardcoding without any key bits if the channels C1 and

C2 satisfy some conditions. The ratek/n is called the secrecy rate.
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Secrecy capacity of a wire tap channel is the largestk/n for which the objectives of secure and reliable

communication is achievable. Secrecy capacity is a function of the channels C1 and C2. If the capacity of C1

is greater than the capacity of C2, one would intuitively expect secrecy capacity to be positive. This intuition has

been justified in several cases. Wyner [2] showed that if C2 isa degraded version of C1 (C2 is C1 concatenated

with another DMC) then secrecy capacity is positive. Csisz´ar and Körner [3] showed that the secrecy capacity is

positive for the cases when C1 is “less noisy” than C2. Maurer[4], [5] generalized this even further and was able

to conclude several very powerful results for a general C1 and C2. Finding secrecy capacity of a general wire tap

channel still remains an unsolved problem. The most recent progress in this problem was made by Van Dijk [6].

The key distribution problem in wire tap channels, which falls under the general problem of key generation from

correlated source outputs, has been studied extensively [4], [5], [7]. The objective of secure key distribution is for

Alice and Bob to share a commonk-bit key about which Eve’s entropy is maximal. In key distribution, thek bits

can be unknown to Alice before transmission. Powerful ideassuch as common randomness, advantage distillation

and privacy amplification were developed in the context of key distribution over wire tap channels [7], [8]. Several

key distribution protocols have been developed and studied; many of the protocols make use of a parallel, error-free

public channel between Alice and Bob during implementation.

The problem of developing forward coding schemes (with no parallel channel) for secure communication over

wire tap channels has not received much attention. Some examples of coding schemes have been provided in [2]

and [4]. A condition for constructing codes for the modified wire tap channel, introduced by Wyner [9], has been

studied by Wei [10]. Code construction methods and their connection to security have not been extensively explored

so far. However, existance of coding schemes for various generalized wire tap channel scenarios has been proven

by several authors recently [11], [12], [13]. In particular, the existance of coding methods based on LDPC codes

has been shown in [13].

In this paper, we focus on the problem of developing coding schemes for secure communication across wire tap

channels. The paper is broadly divided into two parts. In thefirst part, we provide a novel proof of the secrecy

capacity theorem for certain wire tap channels. The noveltyin the proof is that it separates the requirements of

security and reliability. We show an important link betweencapacity-approaching codes and security. The proof

also provides a clear construction method for coding schemes for secure communication across arbitrary wire tap

channels.

In the second part, we develop codes for three different wiretap channels. For a wire tap channel with a noiseless

main channel and a binary erasure channel (BEC) as the wire tapper’s channel, we provide codes that achieve secrecy

capacity using the threshold properties of codes on graphs under message passing decoding. To our knowledge,

these are the first codes that achieve secrecy capacity over wire tap channels. We extend the constructions to wire

tap systems that have BECs as both the main and wiretapper’s channel. The connections between the threshold of

LDPC codes under message-passing decoding and security areimportant new contributions of this paper. Finally, we

consider a wire tap channel with a noiseless main channel anda binary symmetric channel (BSC) as the wiretapper’s

channel. For this case, we provide a coding solution using codes that have good error-detecting capability.
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The rest of the paper is organized as follows: In the first part(Section II), we present the novel proof of the

secrecy capacity theorem for wire tap channels. In Section III, we discuss the general coding scheme for wire

tap channels. In the next four sections of the paper (SectionIV-VII), we present codes for the three specific wire

tap channels given above. Finally, we conclude in Section VIII with a discussion of results and topics for future

research.

II. CODING FOR THEWIRE TAP CHANNEL

In a general wire tap channel (Fig. 1), C1 and C2 are discrete memoryless channels (DMCs). The two DMCs

have the same input alphabet but different output alphabet.C1 is denotedX → Y , whereX is a random variable

denoting an input symbol to C1, andY is a random variable denoting an output symbol from C1. Similarly, C2

is denotedX → Z. A sequence ofN input symbols is denoted byXN or X. Y N andY, andZN andZ have

similar notations for the outputs. C1 and C2 of a wire tap channel are called the main channel and wire tap channel,

respectively.

A. Secrecy capacity of the wire tap channel

The notion of secrecy capacity, as introduced by Wyner [2], has an operational meaning of being the maximum

possible rate of information transmission between Alice and Bob that still enables Eve to be kept totally ignorant.

Before defining the operational meaning precisely, we look at the calculation of secrecy capacity for a given wire

tap channel. The secrecy capacity Cs for a general wire tap channel can be calculated as follows [3]:

Cs = max
V →X→(Y,Z)

[I(V ; Y ) − I(V ; Z)] , (1)

where the maximum is over all possible random variablesV in joint distribution with X , Y and Z such that

V → X → (Y, Z) is a Markov chain. The random variableV does not have a direct physical meaning; it is used

for calculation purposes. Note that Cs could turn out to be zero or negative in some cases. At present, the calculation

of secrecy capacity is an unsolved problem when C1 and C2 are general DMCs. However, the calculation of secrecy

capacity can be simplified for some special cases that imposerestrictions on the wire tap channel with respect to

the main channel.

If I(V ; Y ) ≥ I(V ; Z) for all Markov chainsV → X → (Y, Z), the main channel is said to be less noisy than

the wire tap channel. If the main channel is less noisy than the wire tap channel [3], then

Cs = max
PX(x)

[I(X ; Y ) − I(X ; Z)] , (2)

where the maximum is over all possible distributionsPX(x) of X . Moreover, as shown in [6],I(X ; Y )− I(X ; Z)

is a convex function ofPX(x) when the main channel is less noisy than the wire tap channel;hence, the secrecy

capacity can be calculated using convex optimization methods. It was further shown in [6] that ifI(X ; Y ) and

I(X ; Z) are individually maximized by the samePX(x), and the main channel (X → Y ) is less noisy than the

wire tap channel (X → Z), then

Cs = Capacity(X → Y ) − Capacity(X → Z), (3)
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where Capacity(.) refers to the usual channel capacity.

B. Coding method

The coding problem for Alice in the wire tap channel involvesadding redundancy for enabling Bob to correct

errors (across the main channel) and adding randomness for keeping Eve ignorant (across the wire tap channel). The

coding method presented here is not new. It is present in the proofs in [2] and [3]. More recently, similar coding

methods have been used in [11], [12] for finding bounds and error exponents in the context of wire tap channels.

However, our method of proof separates the requirements of security and reliability and results in a simple design

method for codes over a wire tap channel.

Let us assume that Alice needs to transmit one out ofM equally likely messages i.e. a message denotedu is

such thatu ∈ {1, 2, · · · , M} and Prob{u = i} = 1/M . Alice usesM codesCi, 1 ≤ i ≤ M with |Ci| = L

and block-lengthN . Each codeword ofCi consists ofN symbols from the input alphabet of the main or wire tap

channel. We let the common input alphabet to the two channelsbe {1, 2, · · · , K}. A symbol of the input alphabet

is denotedk. A messageu is encoded into a transmitted wordx as follows:x is chosen uniformly at random

from the codeCu. The coding method is illustrated in Fig. 2. The transmittedword x , in general, belongs to the

overall codeC = ∪iCi. The rate of information transmission from Alice to Bob (in terms of bits per channel use)

in such a setting is given bylog2 M/N . The receiver on the main channel (Bob) decodes a received word y with

respect to the overall codeC into a decoded messagêu (say, by Maximum-Likelihood (MaxL) decoding). We let

the output alphabet of the main channel be{1, 2, · · · , Jm} denoting a symbol byjm. The eavesdropper on the wire

tap channel is assumed to have unlimited power to process thereceived wordz. We let the output alphabet of the

wire tap channel be{1, 2, · · · , Jw} denoting a symbol byjw.

x ∈ Cu

Encoder

Wire Tap
Channel

Main
Channel

x y

z

DecoderAlice Bob

Eve

ûu

Fig. 2. Coding method for the wire tap channel.

The objective of Alice and Bob in a wire tap channel can now be given a precise definition. LetU, Û, andZ

be random variables denoting Alice’s message, Bob’s decoded message, and Eve’s received word, respectively. Let
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H(V ) represent the entropy of a random variableV . Then, the objective is to achieve the following:

Prob{U 6= Û} → 0. (4)

I(U;Z)/N → 0. (5)

The constraint (5) is referred to as the security constraint, while (4) is called the reliability constraint. If an encoder

(as in Fig. 2) withRs = log2 M/N satisfies the security and reliability constraints for a given wire tap channel,

then such an encoder is said to achieve a secrecy rateRs.

C. Security of the coding method

The security constraint is of paramount importance in the design of an encoder for a wire tap channel. The

following choice of the codesCu satisfies the security constraint: EachCu should approach capacity over the wire

tapper’s channel (similar to the special case considered byWyner in [2]). We present the criterion in the following

theorem (the notation used is from Fig. 2 and Section II-B).

Theorem 1: If each codeCu, u ∈ {1, 2, · · · , M} comes from a sequence of codes that approach capacity

asymptotically over the wire tap channel, thenI(U;Z)/N → 0, asN → ∞.

Proof: See Appendix I.

This fundamental connection between capacity-approaching codes and secrecy has been used in many works on

wire tap channels beginning with [2] implicitly. In Appendix II, we show that this connection can be used to design

codes that approach the secrecy capacity of certain wire tapchannels. Particularly, we have shown that the reliability

condition can be satisfied while simultaneously forcing each codeCu to approach capacity.

In summary, we have shown that secrecy capacity can be achieved for certain wire tap channels using codes

that achieve capacity over the wire tapper’s channel. A significant drawback is that capacity-achieving codes are

essential for guaranteeing the security of the method. Since capacity-achieving codes are not practical in many

settings, design of practical codes that are secure is an important problem that needs to be addressed. If the resulting

code is practical and secure, transmission rates below secrecy capacity are certainly acceptable. The remainder of

this paper is concerned with developing practical codes andprotocols for wire tap channels. In some simple settings,

practical methods that achieve secrecy capacity are given.

III. C ODE DESIGN FOR THEWIRE TAP CHANNEL

In this section, we study the design and use of linear codes over a wire tap channel. We use a method that

was first introduced and studied by Wyner [2], [9] for two specific cases. We have extended Wyner’s study by

considering other wire tap channels. We have also provided better, implementable codes for the cases studied by

Wyner.

A. Coding method

We consider a coding method similar to Fig. 2 but with linear codes and cosets. To transmitk-bit messages, we

first select a(n, l) linear binary codeC such thatk ≥ n− l. Out of the2n−l cosets ofC, we choose2k cosets and
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let each message correspond to a chosen coset. The selectionof the cosets is done in a linear fashion. SupposeG

is a generator matrix forC with rows g1, g2, · · · , andgl. We selectk linearly independent vectorsh1, h2, · · · ,

andhk from {0, 1}n \ C. The coset corresponding to ak-bit messages = [s1 s2 · · · sk] is determined as follows:

s → s1h1 + s2h2 + · · · + skhk + C. (6)

Though the above correspondence is deterministic, the encoding procedure has a random component in the selection

of the transmitted word. Ak-bit messages is encoded into an-bit word randomly selected from the coset ofC

corresponding tos. Hence, the transmitted word,x, is given by

x = s1h1 + s2h2 + · · · + skhk + v1g1 + v2g2 + · · · + vlgl,

wherev = [v1 v2 · · · vl] is an uniformly randoml-bit vector. The overall encoding operation can be described as a

matrix multiplication. LetG∗ be thel × n matrix with rowsh1, h2, · · · , andhl. Then,

x = [s v]





G∗

G



 .

Hence,x belongs to the codeC with generator matrix

G =





G∗

G



 .

The goal of both the legitimate receiver and the eavesdropper is to determines from their respective received

vectors. Restating the conditions of Section II-B, the design of the codesC andC should be such that (1)s can be

determined without error across the main channel, and (2) every s is equally likely across the wiretapper’s channel.

Guided by the results of the previous sections, we could choose C as a capacity-achieving code over the

wiretapper’s channel. However, designing a codeC that can be decoded across the main channel is still a challenge.

Moreover, capacity-achieving codes have not yet been demonstrated in practice for many channels. In the following

sections, we look at some design approaches for some simple wire tap channels. The encoding method and notation

will remain the same for all cases.

IV. N OISELESS MAIN CHANNEL AND ERASURE WIRETAPPER’ S CHANNEL

We begin with the simplest possible wire tap channel with a binary erasure channel (BEC) as the wiretapper’s

channel and a noiseless main channel. This scenario is shownin Fig. 3. In Fig. 3, the wiretapper’s channel has

been denoted BEC(1− ǫ) i.e. the probability of erasure in the wiretapper’s channelis 1− ǫ. The probability that a

bit is leaked to the wiretapper isǫ. This notation has been chosen for future convenience. We will denote the wire

tap channel of Fig. 3 as EWT(ǫ). Using (3), we see that the secrecy capacity of an EWT(ǫ) is

Cs = 1 − Capacity(BEC(1 − ǫ)) = 1 − (1 − (1 − ǫ)) = 1 − ǫ. (7)

The coding method across an EWT(ǫ) is illustrated in Fig. 4. In the figure,S is the random variable denoting

the k-bit message to be transmitted. The codeC is chosen to be an(n, n − k) code, and the codeC is chosen to
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Alice XS
Bob

Y

Eve

Z

BEC(1 − ǫ)

Fig. 3. Wire tap channel denoted EWT(ǫ).

X S

Bob

Z

Eavesdropper

XS

Alice

H: parity-check matrix ofC

Encoder S = HXT

BEC(1 − ǫ)seclected from
X: Randomly

coset of a codeC
with syndromeS

Fig. 4. Coding method.

be the entire vector space{0, 1}n. The transmittedn-tuple is denoted by the random variableX = [X1 X2 · · ·Xn].

Note that the messageS can be seen as a syndrome ofC with respect to a carefully constructedk×n parity-check

matrix H. Since the channel between Alice and Bob is error-free, Bob finds the message as follows:S = HXT

(mod 2). The secret information rate isR = k/n. From (7), we see that for secure transmission,

R = k/n < 1 − ǫ. (8)

Assuming that all messages are equally likely, we haveXi = 0 or Xi = 1 with probability 1/2 each. The

eavesdropper learnsXi with probability ǫ. That is, the random variableZ = [Z1 Z2 · · ·Zn] is such thatZi = Xi

with probability ǫ, andZi =? (unknown or erasure) with probability1 − ǫ.

A. Security Criterion

To develop a security criterion for the choice ofC, we calculate the eavesdropper’s uncertaintyH(S|Z) by

first evaluatingH(S|Z = z). Note that the eavesdropper is given complete knowledge of the codeC and infinite
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computational power. The main source of uncertainty is the uniformly random selection of the transmitted wordX

from the coset ofC corresponding to the messageS.

If a coset ofC contains at least one vector that agrees withz ∈ {0, 1, ?}n in the unerased positions, we say that

the coset is consistent withz. Each consistent coset corresponds to a possible message for the eavesdropper. Let

N(C, z) denote the total number of cosets ofC consistent withz. Since each message is equally likelya priori,

we get

H(S|Z = z) = log2 N(C, z). (9)

For an(n, n−k) codeC, the maximum possible value forN(C, z) is the total number of cosets2k. If N(C, z) =

2k, we say thatz is secured byC since the eavesdropper’s Prob{S = s|Z = z} = 1/2k for every possible message

s. The following theorem (adapted from [9, Lemma 3]) states a condition for a vectorz to be secured by a code

C.

Theorem 2 (Ozarow, Wyner ’84): Let an (n, n − k) codeC have a generator matrixG = [a1 · · ·an], whereai

is the i-th column ofG. Consider an instance of the eavesdropper’s observationz ∈ {0, 1, ?}n with µ unerased

positions given by{i : zi 6=?} = {i1, i2, · · · , iµ}. z is secured byC iff the matrix Gµ = [ai1ai2 · · ·aiµ
] has rank

µ.

Proof: If Gµ has rankµ, the codeC has all2µ possibleµ-tuples in theµ unerased positions. So each coset

of C also has all2µ possibleµ-tuples in theµ revealed positions. SoN(C, z) = 2k.

If Gµ has rank less thanµ, the codeC does not have allµ-tuples in theµ unerased positions. So there exists at

least one coset that does not contain a givenµ-tuple in theµ unerased positions, andN(C, z) < 2k.

If all possible random vectorsz obtained over a BEC(1 − ǫ) are secured with probability close to one by an

(n, n − k) codeC, ratek/n is achievable with perfect secrecy over an EWT(ǫ).

B. Using duals of codes on graphs

We now study the use of the threshold property of codes on graphs for providing security over an erasure wire

tap channel. We illustrate the method using Low-Density Parity-Check (LDPC) codes. The extension to other codes

on graphs is shown in examples.

Consider a bipartite graph ensembleCn(λ, ρ) with n left nodes and left and right edge degree distribution

polynomialsλ(x) and ρ(x), respectively [14]. The adjacency matrix of a graph from theensemble provides the

parity-check matrix of a low-density parity-check (LDPC) code. Let the threshold forCn(λ, ρ) over the binary

erasure channel beα∗(λ, ρ). The threshold property has the following straight-forward interpretation:

Theorem 3: Let M be a parity-check matrix of an LDPC code from the ensembleCn(λ, ρ). A submatrix formed

by selecting columns ofM independently with probabilityα will have full column rank forα < α∗(λ, ρ) for large

k with high probability.

Theorem 3 enables the use of duals of LDPC codes as the codeC over an EWT(ǫ) as shown in Fig. 4. We let

a matrix M from the ensembleCn(λ, ρ) to be the generator matrix forC. By Theorem 3, the columns of the
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matrix M corresponding to the leaked bits over a BEC(1 − ǫ) will have full rank with high probability whenever

ǫ < α∗λ, ρ). Note that the probability that a bit is leaked across a BEC(1 − ǫ) is equal toǫ. In combination with

Theorem 2, we see that the codeC with generator matrixM provides complete security with probability tending

to one for large block-length over an EWT(ǫ) with ǫ < α∗(λ, ρ).

Example 1: The Cn(x2, x5) ensemble of(3, 6)-regular LDPC codes has thresholdα∗(x2, x5) ≈ 0.42. Let M

be an adjacency matrix from the ensemble with largen (say,n > 105). M is ann/2 × n binary matrix with row

weight 3 and column weight6. The (n, n/2) codeC with generator matrixM can be used over an EWT(ǫ) for

ǫ < 0.42 with perfect secrecy. The information rate between the honest parties in this case isR = 0.5 compared

to the upper bound of1− ǫ = 0.58 (from (8)). (In practice, the value ofǫ could be reasonably lesser than0.42 for

added security.)

The above argument can be extended to other ensembles of codes on graphs that have capacity-achieving

thresholds over the binary erasure channel. We illustrate the method with the following example.

Example 2 (Tornado codes): A rate-2/3 tornado code ensemble with thresholdδ = 0.33257 has been reported in

[15]. A parity-check matrixM for a code from the ensemble will have dimensionsn/3×n. The(n, n−2/3n) code

C with generator matrixM can be used over an EWT(ǫ) for ǫ < 0.33257 with perfect secrecy. The information rate

between the honest parties in this case isR = 2/3 = 0.66666... compared to the upper bound of1− ǫ = 0.66743.

Similar examples using the other classes of capacity-approaching ensembles can be constructed. Hence over an

erasure wire-tap channel with wire-tap probabilityǫ, secure information transmission rates tending to the upper

bound of 1 − ǫ are achievable using duals of codes on graphs that approach capacity over the binary erasure

channel.

Note that the codeC has properties that are opposite to the requirements of Section II-B. While we had proposed

to use a code that is capacity-achieving over the wiretapper’s channel in Section II-B, we have used the dual of

a capacity-achieving code when the wiretapper’s channel isa BEC. In fact, using the dual appears to be a more

powerful method since security does not depend on capacity-achieving codes. Both possibilities are worth exploring

in other wire tap channels.

V. EFFICIENTLY DECODABLE SECRECY CODES FOR NOISELESS MAIN CHANNEL AND ERASURE WIRETAP

CHANNEL SYSTEMS

We now talk about designing linear-time decodable secrecy codes for the system shown in Fig. 3, where the

main channel is noiseless and the wiretap channel is a BEC. Inthe previous section, we showed how to use dual

codes of LDPC codes to construct secrecy codes for this syetem. The cosets of a dual code of an LDPC code are

used to send secret messages. LetC be an LDPC code. LetG be the generator matrix ofC⊥ (i.e. the parity check

matrix of C), andH be the parity check matrix ofC⊥ (i.e. the generator matrix ofC). G is a sparse matrix since

C is an LDPC code. As we discussed in the previous sections, a coset ofC is indexed by a secret messageS and

the transmitted wordX is a randomly chosen word from that coset. LetC have rater and letG∗ be the matrix

containing the rest of independent vectors in{0, 1}n. In Fig. 5, we show the matricesG andG∗. In Fig. 5, we also
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G∗
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vn(1−r)
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v2

s1

n

n(1 − r)

T T
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x1

x2

xnsnr

nr

Fig. 5. The encoding procedure

show how one can encode annr-bit secret message. The bits{si}
nr
1 are the secret bits, and the bits{vi}

n(1−r)
1

are chosen at random.{xi}
n
1 are the transmitted bits.

We now consider the decoding problem for Bob. SupposeG has rowsg1, g2, · · · , andgn(1−r). We selectnr

linearly independent rowsh1, h2, · · · , andhnr from {0, 1}n \ C. Let G∗ be the matrix with rows ash1, h2, · · · ,

andhnr. Let the matrix[G∗T , GT ] be defined as,

[G∗T , GT ] = [h1
T ,h2

T , · · · ,hnr
T ,g1

T ,g2
T , · · · ,gn(1−r)

T ].

Let W be defined asW = [S,V]T , whereS is the secret message, andV is a random vector. The transmitted

word X is now given by,

X = [G∗T , GT ]W. (10)

The decoding problem for Bob is to determineW (or just S) from (10); this can be easily seen to be aO(n2)

operation.

We definedH to be a parity check matrix of the codeC⊥ above. An equivalent way of findingS is for Bob to

compute the syndromeHX. For a suitable choice ofH , one could haveS = HX. However, sinceH is a dense

matrix (in general), the complexity of this decoding is alsolikely to be O(n2).

We now ask the following question. Is it possible to achieve linear or almost-linear decoding complexity for Bob

by carefully choosing a subset of the set of all the cosets ofC? In other words, can we sacrifice some secrecy rate

to achieve linear or almost-linear decoding complexity forBob? As we will discuss later, our approach will be to

make some of the elements ofS always equal to zero. This will decrease our secrecy rate, but we will show that

almost-linear or linear time decoding becomes possible in that case.

We first show that the decoding problem in (10) is similar to the problem of systematic encoding of linear block

codes. Let a linear block code have parity check matrixH , whereH = [H1, H2]. Let the transmitted codeword

be C = [mT ,pT ]T , wherem is the message andp is the parity check part. Hence, to findp, the encoder has to
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solve

−H1m = H2p. (11)

(10) is similar to (11) ifX = −H1m, H2 = [G∗T , GT ], andW = p. In [14], the authors have shown how to

efficiently solve (11) for LDPC codes. As in [14], our approach will be to multiply (10) by a matrixQ to get

QX = Q[G∗T , GT ]W. (12)

To make the operation of findingW from the above equationO(n), we need to have the matrixQ[G∗T , GT ] in a

special form and we also need to ensure thatQX is a O(n) operation.

sn(r−t)

G

s2

0

0

vn(1−r)

v1

v2

s1

n

n(1 − r)

n(r − t)

nt

G1

P

H∗

T T

=

x1

x2

xn

Fig. 6. Choosing a subset of the set of cosets

n(1 − t)

G

s2

0

0

vn(1−r)

v1

v2

s1

n(1 − r)

n(r − t)

nt

G1

P

T T

=

x1

x2

xn

sn(r−t)

nβ H1

1

1

0

1

1

Fig. 7. The matrixH1

A. Choosing a subset of the set of cosets

Let G1 be a sparse full row-rank matrix in{0, 1}n made up using the set of independent vectors in{0, 1}n but

not in G. Let G1 have dimentionsn(r − t)× n. We show this in Fig. 6. LetP be the matrix with rows as the rest
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of the independent vectors in{0, 1}n. Let H∗ be defined as shown in the figure, and letH∗ be the parity check

matrix of an LDPC codeC∗. H∗ has dimensionsn(1 − t) × n. Hence,C∗ has ratet. It can be seen that, ifG

corresponds to a Tanner graph with degree distribution pair(λG, ρG), andG1 corresponds to a Tanner graph with

degree distribution pair (λG1 , ρG1), thenH∗ corresponds to a Tanner graph with degree distribution pair(λH∗ , ρH∗ ),

where

λH∗(x)
∫ 1

0 λH∗ (x)dx
=

1
∫ 1

0 λG(x)dx
∫ 1

0 λG1(x)dx

(

λG(x)

∫

λG1(x)dx + λG1(x)

∫

λG(x)dx

)

, (13)

and

ρH∗(x) =

∫ 1

0
λG(x)dx

∫ 1

0
λG(x)dx +

∫ 1

0
λG1(x)dx

ρG1(x) +

∫ 1

0
λG1(x)dx

∫ 1

0
λG(x)dx +

∫ 1

0
λG1(x)dx

ρG(x). (14)

We restrict the transmitted wordX to be a linear combination of the rows in onlyG andG1, i.e. all the vectors

in P are multiplied by zero. The secrecy code rate now falls tor − t. It is important to note that this new secrecy

code will have the same security properties as the original code, since only the matrixG determines the security

properties of the secrecy code.

sn(r−t)

B T

D E

nβn(1 − t − β)

s1

vn(1−r)

v1

x1

x2

xn(1−t)

0

=

X∗ vector

n(1 − t − β)

nβ

Fig. 8. The matrixH

1) Forming the matrix H1: Let the codeC∗ have erasure thresholdβ under the standard iteratve erasure-decoding

algorithm. Hence, any submatrix formed using a set ofnβ columns of then×n matrix in Fig. 6 (i.e. includingG,

G1 andP ) will have full column rank (asymptotically). By performing some row and column permutations inG,

G1 andP , we can get an approximately upper triangular form inH∗. Note that, after row and column permutations,

we need to rearrange thev-bits, s-bits and thex-bits. To keep the notation simple we will still call the firstn(1−r)

bits v-bits and the nextn(r− t) bits ass-bits with the understanding that Bob now will possibly haveto find some

or all of the bits in not onlyS, but also inV. After the row and column permutations we continue to call the

matricesG, G1 andP by the same names.

Now, consider Fig. 7. The matrixH1 is obtained by retaining thenβ columns in the approximate upper triangular

form and by choosingn(1 − t − β) other columns in such a way so thatH1 has full column rank in the column

space ofG andG1. Thus,H1 will have full column rank in the fulln × n matrix (G, G1, andP ) as well.
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2) Forming the matrix H: In Fig. 8, we show the matrixH , which is obtained by rotating the matrixH1 in

Fig. 7 by 90 degrees clockwise. Note that, matrixH is not the generator matrix of the codeC or the parity check

matrix of C⊥. We will now basically follow the steps described in [14]. In[14], the authors described how to

encode LDPC codes linearly or almost-linearly. The equation that needs to solved eficiently in order to encode

LDPC codes is (11).

As shown in Fig. 8, the matrixH can be divided into matricesB,T ,D andE as in [14] (the difference being

that we do not have matricesA andC) with dimensionsnβ ×n(1− t− β), nβ ×nβ, n(1− t− β)×n(1− t− β)

andn(1− t− β)×nβ respectively.T is a lower triangular matrix. Also, note that, we have retained onlyn(1− t)

values in theX vector on the right hand side. SinceH has full row rank (becauseH1 in the previous section had

full column rank),n(1− t) x-bits are enough to find out thev-bits and thes-bits. We call this new vectorX∗ (Fig.

8).

ET−1

nβ

nβ

n(1 − t − β)

n(1 − t − β)

I

I

0

Fig. 9. The matrixQ

3) Multiplying by the matrix Q: As in [14], we multiply both sides in Fig. 8 by the matrix Q shown in Fig. 9. The

result is shown in Fig. 10. The result of the multiplication of the matrix Q with the matrix H can be precomputed

before the actual decoding begins. We now talk about the multiplication of the matrix Q and the vectorX∗ to

get the vectorY. We need to show that this multiplication isO(n) since we need to do this operation for every

receivedX.

We now turn to Fig. 11, where we have broken the vectorsX∗ and Y into vectorsX∗
1, X∗

2 and Y1, Y2

sn(r−t)

B T

nβn(1 − t − β)

s1

vn(1−r)

v1

=

0

y1

y2

yn(1−t)

Y vector

nβ

n(1 − t − β)

0

ET−1B+D

Fig. 10. The vectorY
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X∗

1
vector

nβ n(1 − t − β)

I

ET−1 I

0nβ

n(1 − t − β)

Q matrix

x1

x2

xn(1−t)

y1

y2

yn(1−t)

nβ

n(1 − t − β)

X∗

2
vector

Y2 vectorX∗ vector

Y1 vector

Fig. 11. The multiplication of Q andX∗

respectively, as shown in the figure. VectorsX∗
1 and Y1 have dimensionsnβ × 1. VectorsX∗ and Y2 have

dimensionsn(1 − t − β) × 1. Clearly, the vectorsY1 and X∗
1 are equal. Hence,Y1 can be computed in linear

time. We now turn to computation ofY2. Let

ET−1X∗
1 = Y3

, and hence

Y3 + X∗
2 = Y2.

Clearly,T−1X∗
1 can be computed using backsubstitution inO(n) time, and the multiplication of this result andE

is alsoO(n). Since the adition ofY3 andX∗
2 is linear time, we have shown that the generation ofY from Q and

X∗ is O(n).

4) Solving for vectors S and V: We now turn to Fig. 10. Let the firstn(1 − t − β) elements of the vector in

the left hand side of that equation be denoted byU1 and the nextnβ elements be denoted byU2. We show this

in Fig. 12. We now need to solve forU1 andU2 to find outS andV. The equations we need to solve are,

BU1 + TU2 = Y1, (15)

and

(ET−1B + D)U1 = Y2, (16)

whereY1 andY2 are as defined before (in Fig. 11). Solving the second equation first, we get

U1 = (ET−1B + D)−1Y2. (17)

This multiplication, in general, is notO(n), since(ET−1B + D) is not sparse anymore. The complexity of this

multiplication isO((1 − t − β)2n2).

Now, we have, from (15),

TU2 = Y1 + BU1.
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SinceB is a sparse matrix,BU1 can be computed in linear time, and thenU2 can be solved inO(n) time by

backsubstitution sinceT is a sparse lower triangular matrix. Note that, if

β = 1 − t,

then the complexity of the whole decoding operation reducesto O(n). Hence, if the codeC∗ is a capacity-

achieving erasure-correcting code, then linear time decoding is possible. As we will discuss in the next section, this

is a sufficient condition but not necessary. We now conclude this section with an example of an almost linear-time

decodable secrecy code.

Example 3: Let C be a(3, 6)-regular LDPC code with block-lengthn. G matrix is the parity check matrix of

C (i.e. the generator matrixC⊥). C has rater = 1/2. The matrixG1 is chosen to be the parity check matrix of

a (2, 6)-regular LDPC code. Then the codeC∗ is an LDPC code with all variable nodes having degree5 and all

check nodes having degree6. C∗ has ratet = 1/6. The LDPC codeC has an erasure thresholdα ≈ 0.42. The

codeC∗ has an erasure thresholdβ ≈ 0.55. Thus, the secrecy rate isr − t = 1/3, and the decoding complexity is

O(n + n2(β − (1 − t))2) = O(n + 0.08n2). The transmitted message is secure across the wiretap channel having

erasure probability at least(1 − α) = 0.58.

B. Linear time decodable secrecy codes

We now talk about linear time decodable secrecy codes. As we saw in the previous sections, a sufficient condition

for the secrecy code to be linear-time decodable is that the codeC∗ in Fig. 6 (with parity check matrixH∗) should

be a capacity achieving code on a binary erasure channel so that the row gap inH∗ (i.e. (1 − t− β)) is zero. The

authors in [14] have shown that the row gap can also be calculated using the erasure threshold of the transpose

of the parity check matrix (H∗). The transpose ofH∗ does not correspond to a non-zero rate code. Nevertheless,

the greedy algorithm that is used to get approximate triangulation in H∗ can also be thought to be the standard

iterative erasure decoding algorithm operating on the transpose ofH∗. Let H∗ has degree distribution(λH∗ , ρH∗),

whereλH∗ andρH∗ correspond to the variable and the check side respecively. Then, the transpose ofH∗ will have

a degre distribution(ρH∗ , λH∗). They showed that the row gap obtained is then(1− t− δ), whereδ is the erasure

threshold of the degre distribution pair(ρH∗ , λH∗). It turns out that, many of the known degree distributions of

good LDPC error corecting codes over some channels actuallyalso allow linear time encoding (i.e.(1 − t − δ) is

zero).

In the following example, we will use this idea to construct asecrecy code that allows linear-time decoding (and

encoding sinceG, G1 in Fig. 6 are sparse anyway). We will not talk about the degreedistribution of the edges,

since some matrices may have a few degree zero variable nodesin our example. For a code with degree distribution

(λ, ρ) (whereλ andρ correspond to the variable and check side degree distributions of the edges), letv(x) denote

the degree distribution of the variables. Inv(x), the coefficient ofxi, vi, is the fraction of variable nodes with

degreei. Clearly,

v(x) =

∫

λ(x)dx
∫ 1

0 λ(x)dx
. (18)
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ET−1B+D
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sn(r−t)

s1

vn(1−r)

v1

0

=

0
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Y vector

nβ
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Fig. 12. Solving forU1 andU2

Example 4: We go back to Fig. 6. Let the codeC (with parity check matrixG) have degree distributions

(λG, ρG), whereλG(x) = 0.6087x + 0.3913x2, andρG(x) = x6. Thus, the variable degree distribuion,vG(x) =

0.7x2 + 0.3x3. Let the matrixG1 correspond to the parity check matrix of a code with degree distributions

(vG1 , ρG1), wherevG1(x) = 0.7 + 0.3x, andρG1(x) = x6. Hence, the degree distributons ofH∗ is (λH∗ , ρH∗),

where λH∗(x) = 0.3769x + 0.4846x2 + 0.1385x3, and ρH∗(x) = x6. The rate of the secrecy code then is

r(λG, ρG)− r(vH∗ , ρH∗) = 0.0429, wherer denotes the rate of the corresponding LDPC code. Hence, our secrecy

rate has dropped to0.0429 from 1− (1− r(λG, ρG)) = 0.6714. The erasure threshold ofC turns out to be0.2625.

Hence this code is secure on a wiretap channel with erasure probability at least(1−0.2625) = 0.7375 (i.e. secrecy

capacity is0.7375). This secrecy code is linear time decodable.

VI. ERASURE MAIN CHANNEL AND ERASURE WIRETAPPER’ S CHANNEL

In this section, we consider wire tap systems where both the wire tap channel and the main channel are binary

erasure channels (BEC). Though our results apply with a small modification to systems with DMCs other than the

BEC as the main channel, we restrict ourselves to the BEC casefor ease of explanation.

With a BEC as the main channel, the wire tap system is as shown in Figure 13. The wiretapper’s channel is a

BEC(ǫw)

Alice X

Eve

Bob

Z

S Y
BEC(ǫm)

Fig. 13. The BEC wire tap system

October 12, 2005 DRAFT



17

BEC with erasure probabilityǫw, and the main channel is another BEC with erasure probability ǫm. According to

(3), the secrecy capacity of this system isCs = ǫw − ǫm, which is positive wheneverǫw > ǫm.

A. Using duals of codes on graphs

As in the noiseless main channel case, we consider using the dual of an LDPC code as the codeC for encoding.

Using Theorem 3, security across the wiretapper’s channel can be related to the thresholdα of the LDPC codeC⊥

over erasure channels. Specifically, if1 − ǫw < α, perfect security is guaranteed with high probability.

We now turn to the probability of error on the main channel. Suppose we could design the matrixG∗ such that

the overall codeC still belongs to an LDPC ensemble with thresholdβ over erasure channels. Bob can decodex

(and hence the messages) with asymptotically zero probability of error wheneverǫm < β.

In summary, the requirement on the LDPC codeC is that it should containC, the dual of another LDPC code

C⊥. Since the dual of an LDPC code is likely to have a significantly high number of low-weight codewords, the

requirement appears to be contrary to intuition. A very similar code design problem arises in the construction of

quantum error-correcting codes using sparse graphs [16]. After studying several constructions, the authors of [16]

conclude that such codes are difficult to construct and are unlikely to have high thresholds.

B. Using capacity-achieving codes

We now consider a coding method that will eventually depend on capacity-achieving codes for complete security.

We first pick an LDPC codeC1 of lengthn from an ensemble of codes having asymptotic erasure threshold ǫw.

That means, asn → ∞, C1 recovers all the erasures on an erasure channel with erasureprobability up to at least

ǫw, using the standard iterative erasure decoding algorithm.Let C1 have rater1, and letH1 be the parity check

matrix of the codeC1. Next we pickn(1 − r2) independent vectors from the dual space ofC1, wherer1 < r2.

Let H2 be the matrix formed by these vectors as rows.H2 has dimensionsn(1 − r2) × n. Let H2 be the rest of

the independent vectors in the dual space ofC1. As we will see shortly, we must haveǫw > (1 − r2) in order

to guarantee some equivocation for Eve. LetH2 be the parity check matrix of a codeC2. We wantC2 to have

asymptotic erasure thresholdǫm. We then have,

1 − r2 ≥ ǫm, (19)

and

1 − r1 ≥ ǫw. (20)

Let (λ, ρ) denote the degree distribution of an LDPC code. Let

λ(x) =
∑

i≥1

λix
i−1, (21)

and

ρ(x) =
∑

i≥1

ρix
i−1. (22)
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For all i, λi andρi are non-negative.λi(ρi) denotes the probability that a randomly chosen edge in the Tanner graph

of the code is incident on a variable(check) node of degreei. In our examples, we will constructH2 by picking

n(1 − r2) rows of H1, and the rest of the rows will be inH2. It is then easy to see that, ifH2 corresponds to a

Tanner graph with degree distribution pair (λ2, ρ2), andH2 corresponds to a Tanner graph with degree distribution

pair (λ2, ρ2), thenH1 corresponds to a Tanner graph with degree distribution pair(λ1, ρ1), where

λ1(x)
∫ 1

0
λ1(x)dx

=
1

∫ 1

0
λ2(x)dx

∫ 1

0
λ2(x)dx

(

λ2(x)

∫

λ2(x)dx + λ2(x)

∫

λ2(x)dx

)

, (23)

and

ρ1(x) =

∫ 1

0 λ2(x)dx
∫ 1

0
λ2(x)dx +

∫ 1

0
λ2(x)dx

ρ2(x) +

∫ 1

0 λ2(x)dx
∫ 1

0
λ2(x)dx +

∫ 1

0
λ2(x)dx

ρ2(x). (24)

We have to choose(λ1, ρ1) and (λ2, ρ2) in such a way so that for alli, λ2i andρ2i are non-negative.

0

H2

H2

S

X

n(r2 − r1)

n(1 − r2)

Fig. 14. The encoding procedure

We now discuss the encoding procedure. The encoding procedure in this case is a little different than the encoding

procedure when we had a noiseless main channel. Here, Alice first takes an(r2 − r1)-bit long message vectorS,

and forms an(1 − r1)-bit long vector by addingn(1 − r2) 0’s on top ofS. She now chooses anX at random

from the solution set of the equation shown in Figure 14 and transmits it. We illustrate this encoding procedure in

Figure 15. Note that, the number of solutions to the equation, H2X = 0, is 2n−n(1−r2) = 2nr2 . However, for some

particular choice ofS, sayS1, the number of solutions to the equation shown in Figure 14 is2n−n(1−r1) = 2nr1 .

Obviously, the sameX cannot be a solution for two different values ofS. This explains the splitting of the solution

set space of the equationH2X = 0 into 2nr2

2nr1
= 2n(r2−r1) disjoint subsets, each corresponding to a different value

of S. Hence the rate of our code is(r2 − r1). The interesting point to observe in Figure 15 is that we are not using

the whole space of{0, 1}n, unlike in the previous sections.

1) Equivocation across the wire tap channel: In this section, we calculate the equivocation for Eve. Since Eve’s

channel is a BEC with erasure probabilityǫw, with probability tending to 1, Eve will havenǫw erasures asn → ∞.

If we haveǫw > (1 − r2), usingH2X = 0, Eve must have at least2n(ǫw−(1−r2)) solutions forX, all of which

are equally likely. All these solutions will differ from each other in the erased positions. Sinceǫw is the erasure
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solution set ofH2X = S1

for S = S2

solution set of Figure 14

solution set ofH2X = 0

for S = S1

solution set of Figure 14

solution set ofH2X = S2

Fig. 15. The encoding space

threshold of the code havingH1 as the parity-check matrix, any submatrix formed usingnǫw columns ofH1 will

have full column rank [14]. Thus every solution ofH2X = 0 will give a different value ofS, all of which are

equally likely. The equivocation for Eve is then∆ = n(ǫw − (1 − r2)). If H1 is the parity-check matrix of a

capacity-achieving code on an erasure channel with erasureprobability ǫw, ∆ = n(r2 − r1), and the message will

be completely secure from Eve. Clearly, if the erasure probability of Eve’s channel goes up, Eve will still have at

least this much equivocation.

2) Probability of error on the main channel: When Bob receives a vectorY, he first decodes it by using the

standard iterative erasure decoding technique for LDPC codes on the Tanner graph of the codeC2. Let the erasure

probability of the main channel be at mostǫm. Then, asn → ∞, with probability tending to1 he will be able to

recover the transmitted wordX. Bob then can find out the productH2X, which is his estimate of the messageS.

Example 5: Let C2 be a (3, 6)-regular LDPC code with block-lengthn. Hence,λ2(x) = x2 and ρ2(x) = x5.

C2 has rater2 = 1/2. The codeC1 is chosen to be another LDPC code with all variable nodes having degree5

and all check nodes having degree6. Hence,λ1(x) = x4 andρ1(x) = x5. C1 has rater1 = 1/6. It can be seen

from (23) and (24) that,λ2(x) = x and ρ2(x) = x5. The LDPC codeC2 has an erasure thresholdα∗ ≈ 0.42.

The codeC1 has an erasure thresholdβ∗ ≈ 0.55. Thus, the secrecy rate isr2 − r1 = 1/3, and an equivocation

of n(β∗ − (1 − r2)) = 0.05n is guaranteed across the wiretap channel having erasure probability greater than

β∗ = 0.55. Bob can decode the message with asymptotically zero probability of error on the main channel having

erasure probability at mostα∗ = 0.42.

C. Remarks

We have shown that codes on graphs provide secrecy in erasurewire tap channels with maximum possible secure

information rate. The codes are efficiently implementable in practice.
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VII. N OISELESS MAIN CHANNEL AND BSC WIRETAPPER’ S CHANNEL

In this section, we consider a special case of a wire tap channel, where the eavesdropper sees a binary symmetric

channel (BSC) with error probabilityp, denoted BSC(p). The main channel is error free. Using (3), we see that

Cs = 1 − Capacity(BSC(p)) = 1 − (1 − h(p)) = h(p), (25)

whereh(x) = −x log2 x − (1 − x) log2(1 − x), 0 ≤ x ≤ 1.

The wire tap channel and the encoding is shown in Fig. 16. The method of coding is illustrated with the same

Alice
EncoderS

V

X

BSC(pw)

Eve Z

Bob

X

Generator

G

Random bit

Fig. 16. Coding for a BSC wiretapper’s channel.

notation as Section III.

A. Security across a BSC wiretapper’s channel

We let C be an(n, n − k) code andC be the entire space{0, 1}n. For an arbitraryk-bit messageS = s, the

transmitted wordX ∈ sG∗ + C. Since the cosets ofC cover the entire space ofn-tuples, Eve’s received vectorZ

belongs to some coset ofC, sayuG∗ + C. If e denotes the error vector introduced by the BSC(p) in the wiretap,

we have for1 ≤ i ≤ 2k,

Prob{Z ∈ uG∗ + C|S = s} = Prob{e ∈ (u + s)G∗ + C} = Prob{e ∈ w + C} for somen-tuplew. (26)

We can now state the criterion for selecting the codeC to guarantee security of the messageS: we chooseC such

that for anyn-tuple w, we have

Prob{e ∈ w + C} ≈ 2−k. (27)

Using the above condition in (26), we see that Eve is equally likely to find Z in any coset ofC given any

messageS = s. Assuming allS = s are equally likelya priori, Prob{Z ∈ uG∗ + C} is independent ofu; hence,

Prob{S = s|Z ∈ uG∗ + C} ≈ 2−k, and perfect security is guaranteed.

The LHS of (27) is the probability of the cosetw + C. This probability was first studied by Sullivan [17]

and further extended by Ancheta [18], [19]. The following results can be extracted from their studies: (1) The
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requirement of (27) that the probabilities of a code (w = 0) and a coset (w 6= 0) should be approximately equal

can be achieved for large block-length. (2) The properties of the dual of a code plays an important role in the

probability of a coset. We expand on these two results in the next sections to design codes for the BSC wire tap

channel.

B. Choosing the code C: Security criterion

Using the MacWilliams identities [20, Page 127] for the(n, n − k) linear codeC, we get

∑

e∈C

xn−wt(e)ywt(e) =
1

2k

n
∑

i=0

A′
i(x + y)n−i(x − y)i, (28)

whereA′
i is the number of codewords of weighti in the dual codeC⊥

2 . Using x = 1 − p, y = p, andA′
0 = 1 in

(28), we get
∑

e∈C

pwt(e)(1 − p)n−wt(e) = 2−k + 2−k
n

∑

i=1

A′
i(1 − 2p)i.

Using the MacWilliams identities [20, Page 137] for the coset w + C, we get

∑

e∈w+C

xn−wt(e)ywt(e) =
1

2k

n
∑

i=0

A′
i(w)(x + y)n−i(x − y)i, (29)

where

A′
i(w) = αi(w) − βi(w) (30)

with αi(w) equal to the number of codewords of weighti in the dual codeC⊥
2 orthogonal tow, andβi(w) equal

to the number of codewords of weighti in the dual codeC⊥
2 not orthogonal tow. Using x = 1 − p, y = p, and

A′
0(w) = 1 in (29), we get

∑

e∈w+C

pwt(e)(1 − p)n−wt(e) = 2−k + 2−k
n

∑

i=1

A′
i(w)(1 − 2p)i. (31)

From (30), we see that|A′
i(w)| ≤ A′

i. We now state the main security criterion as a theorem.

Theorem 4: If
n

∑

i=1

A′
i(1 − 2p)i ≈ 0, (32)

then Prob{e ∈ w + C} ≈ 2−k for all n-tuplesw.

Proof: Since|A′
i(w)| ≤ A′

i, we get

|

n
∑

i=1

A′
i(w)(1 − 2p)i| ≤

n
∑

i=1

A′
i(1 − 2p)i ≈ 0.

Hence,

|

n
∑

i=1

A′
i(w)(1 − 2p)i| ≈ 0.

That implies that the second term in the RHS of (31) can be neglected with respect to the first term2−k, and the

proof is complete.

The criterion for the selection ofC is that the dualC⊥ should have a weight distribution that satisfies (32).
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C. Some code constructions

We provide some examples of codes that satisfy the requirement of (32).

Example 6: (Single parity check codes) The dual of a(n, n − 1, 2) single parity check code is the(n, 1, n)

repetition code with weight distributionA′
0 = 1 andA′

n = 1. Hence,
n

∑

i=1

A′
i(1 − 2p)i = (1 − 2p)n ≈ 0

for largen. However, the secrecy rate1/n → 0 for largen. This is an example that was first used by Wyner in

[2] to motivate coding over a wire tap channel.

Example 7: (Hamming codes) The weight distribution of the dual of the[n = 2m − 1, n−m, 3] Hamming code

Hm is A′
0 = 1 andA′

(n+1)/2 = n. Hence,

n
∑

i=1

A′
i(1 − 2p)i = n(1 − 2p)(n+1)/2 ≈ 0

for largen. As in the previous example, the secrecy rate tends to zero for largen.

The following theorem generalizes the above construction method.

Theorem 5: Let {C(n)} be a sequence of(n, n − kn) codes such that Prob{Detection Error}≤ 2−kn over a

BSC(p), 0 ≤ p ≤ 1/2 and limn→∞{kn/n} < log2(1/(1− p)). Let A′
i be the number of codewords of weighti in

the dual codeC⊥
(n). Then for anyn-tuplew,

n
∑

i=1

A′
i(1 − 2p)i → 0, asn → ∞.

Proof: We are given that for the codeC(n)

Prob{Detection Error} =
∑

e∈C(n);e6=0

pwt(e)(1 − p)n−wt(e) ≤ 2−kn .

Adding (1 − p)n to both sides and using the MacWilliams identities, we get

∑

e∈C(n)

pwt(e)(1 − p)n−wt(e) = 2−kn + 2−kn

n
∑

i=1

A′
i(1 − 2p)i ≤ (1 − p)n + 2−kn ,

or
n

∑

i=1

A′
i(1 − 2p)i ≤ 2−kn(1 − p)n = 2n(kn/n−log2(1/(1−p))).

Sincelimn→∞{kn/n} < log2(1/(1 − p)) and the LHS above is nonnegative,
n

∑

i=1

A′
i(1 − 2p)i → 0, asn → ∞.

The existence of(n, n − kn) linear codes with probability of detection error less than2−kn is well known [21,

Section 3.6]. Suppose we find a class of such error detecting codes such that

R = lim
n→∞

kn

n
.
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Then, for largen, the codeC(n), when used as the codeC over a wire tap channel with a BSC(p) as the wiretapper’s

channel, provides perfect security wheneverR < − log2(1 − p), or p > 1 − 2−R. The maximum possible secrecy

rate that can be achieved by this construction is therefore− log2(1 − p).

Codes such as Hamming codes and double error-correcting BCHcodes are examples of such error-detecting

codes. However, most known class of such codes haveR = 0.

VIII. C ONCLUSION AND DISCUSSION

In this paper, we have studied the construction of codes thatprovide security and reliability over a wire tap

channel. Our general construction uses codes that approachcapacity over the wire tapper’s channel. We have shown

that this approach achieves secrecy capacity when the wire tap channel is made of symmetric DMCs. Other cases

require a closer study.

A drawback of using capacity-achieving codes is that they are difficult to find and construct except in some

special cases. One such special case is when the wire tap channel is a binary erasure channel. Hence, codes such as

optimized Tornado codes can be used across erasure wiretapper’s channels as described above. However, we have

shown that capacity-achieving codes are not necessary in this case. If a code exhibits a threshold behavior across a

BEC (codes such as regular LDPC codes), its dual can be used effectively over a wire tap channel with a BEC as

the wiretapper’s channel. This result enables the use of codes that can be more easily constructed. Extending the

connections between codes that exhibit a threshold phenomenon and secrecy over a general DMC is an important

area of future work.

When the wiretapper’s channel is a BEC and the main channel isnoiseless, we have presented codes that approach

secrecy capacity. To our knowledge these are the first and only such codes.

For the case where both the main channel and the wiretapper’schannel are BECs, we have studied two approaches

for code design. The optimality and secrecy capacity of the constructions need to be studied and explored.

For the case where the wiretapper’s channel is a BSC(p) and the main channel is noiseless, we have shown

that codes with good error-detecting properties provide security. The capacity of this construction is− log2(1− p),

which is less than the secrecy capacityh(p). Capacity-approaching codes will probably be graph-based. Use of

graph-based codes for the BSC wiretapper’s channel is a subject for future study.

APPENDIX I

PROOF OFTHEOREM 1

Since eachCu approaches the capacityCw of the wire tapper’s channel, we have for anyǫ > 0 an Nǫ such that

for N > Nǫ, I(X ; Z|U = u)/N ≥ CW − ǫ for eachu. Therefore forN > Nǫ, I(X ; Z|U)/N ≥ CW − ǫ.

ExpandingI(Z; UX) in two ways, we get

I(Z; UX) = I(U ; Z) + I(X ; Z|U) = I(X ; Z) + I(U ; Z|X).

SinceU → X → Z is a Markov chain,I(U ; Z|X) = 0. Therefore forN > Nǫ we have

I(U ; Z)/N = I(X ; Z)/N − I(X ; Z|U)/N ≤ CW − (CW − ǫ) = ǫ.
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APPENDIX II

EXISTENCE OF RELIABLE ENCODERS

In this section, we determine a random coding bound on the probability of error Prob{U 6= Û} in a manner

following Gallager [22, Section 5.6]. Letx be a vector ofN input symbols,y a vector ofN main channel output

symbols, andz a vector ofN wire tap channel output symbols. LetTN (y|x) and SN (z|x) be the transition

probabilities for the main channel and wire tap channel, respectively. LetTSN(y, z|x) be the joint distribution.

We now define a random code ensemble for the coding method of Section II-B. Let QN (x) be an arbitrary

probability assignment on the set of lengthN input sequences. A set ofML words is chosen pairwise independently

from the set of lengthN input sequences according toQN(x). The words are arranged in anM ×L array indexed

by a pair of coordinatesu ∈ {1, 2, · · · , M} andv ∈ {1, 2, · · · , L}; each word is denotedxm, wherem = (u, v).

Each row is considered to be the codeCu i.e. Cu = {xm′ : m′ = (u′, v′); u′ = u}.

Let us assume that a messageu is to be transmitted by Alice. Let us further assume that the word xm with

m = (u, v) is chosen for transmission fromCu. Let y andz be the received vectors for Bob and Eve, respectively.

We will upper bound the probability of an eventE, which captures both the security and reliability constraints.

The eventE is the union of the following two events:

1) EventAm′ : anxm′ for m′ = (u′, v′) 6= m = (u, v) with u 6= u′ is chosen in the code such thatTN(y|xm′ ) ≥

TN(y|xm). This event captures the reliability requirement.

2) EventBm′ : anxm′ for m′ = (u, v′) 6= m = (u, v) is chosen in the code such thatSN (z|xm′ ) ≥ SN (z|xm).

This event captures the security requirement.

The probability ofE averaged over the ensemble for them = (u, v)-th word is

PE,m =
∑

xm

∑

y

∑

z

QN(xm)TSN(y, z|xm)Pr{E|m,xm,y, z} (33)

Using a modified union bound,

Pr{E|m,xm,y, z} ≤





∑

u6=u′

Pr{Am′}





ρ1

+





∑

u=u′,v 6=v′

Pr{Bm′}





ρ2

,

for 0 ≤ ρ1, ρ2 ≤ 1. Now,

Pr{Am′} =
∑

xm′ :TN (y|xm′)≥TN (y|xm)

QN(xm′ )

≤
∑

x

QN (x)
TN (y|x)s1

TN(y|xm)s1
, s1 > 0.

Similarly,

Pr{Bm′} ≤
∑

x

QN (x)
SN (z|x)s2

SN (z|xm)s2
, s2 > 0.
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Using the simplifications in (33),

PE,m ≤
∑

xm

∑

y

∑

z

QN(xm)TSN(y, z|xm)

[

(M − 1)L
∑

x

QN(x)
TN(y|x)s1

TN (y|xm)s1

]ρ1

+
∑

xm

∑

y

∑

z

QN (xm)TSN (y, z|xm)

[

(L − 1)
∑

x

QN(x)
SN (z|x)s2

SN (z|xm)s2

]ρ2

= (M − 1)ρ1Lρ1

∑

y

[

∑

xm

QN(xm)TN (y|x)1−s1ρ1

] [

∑

x

QN(x)TN (y|x)s1

]ρ1

+(L − 1)ρ2

∑

z

[

∑

xm

QN(xm)SN (z|x)1−s2ρ2

] [

∑

x

QN (x)SN (z|x)s2

]ρ2

.

Using si = 1/(1 + ρi), we get a version of Theorem 5.6.1 in Gallager [22]. Following Gallager [22, Section 5.6]

further for the case of discrete memoryless channels, we let

QN (x) =

N
∏

n=1

Q(xn),

where the input vectorx = [x1 x2 · · ·xN ] in terms of its components, andQ(k), k ∈ {1, 2, · · · , K} is an

arbitrary probability assignment on the input alphabet. Similarly, we letTN (y|x) =
∏N

n=1 T (yn|xn) andSN (z|x) =
∏N

n=1 S(zn|xn). Converting to exponential relationships, we get

PE,m ≤ exp{−N [E1(ρ1, Q) − ρ1R1]} + exp{−N [E2(ρ2, Q) − ρ2R2]}, (34)

whereML = eNR1 ; L = eNR2 ;

E1(ρ1, Q) = − log





Jm
∑

jm=1

[

K
∑

k=1

Q(k)T (jm|k)1/(1+ρ1)

]1|ρ1


 ; and (35)

E2(ρ2, Q) = − log





Jw
∑

jw=1

[

K
∑

k=1

Q(k)S(jw|k)1/(1+ρ2)

]1|ρ2


 . (36)

Note that the secrecy rate of a code from the ensemble isRs = R1 − R2. Using a distribution Pr{m} in (34), we

get

PE ≤ exp{−N [E1(ρ1, Q) − ρ1R1]} + exp{−N [E2(ρ2, Q) − ρ2R2]}, (37)

The random coding exponent for the wire tap channel is definedas follows:

Ew(R2) = max
0≤ρ2≤1

max
Q

[E2(ρ2, Q) − ρ2R2]. (38)

Let Q2 be the distribution on the input symbols that maximizes the random coding exponentEw(R2). To satisfy

the security constraint of Section II-C, we restrict ourselves to ensemble of codes with input symbol distribution

Q2(k). We can now define another random coding exponent for the mainchannel as follows:

Em(R1) = max
0≤ρ1≤1

[E1(ρ1, Q2) − ρ1R1].

Using the random coding exponents in (37), we get the following theorem.

October 12, 2005 DRAFT



26

Theorem 6: For an ensemble of codes using the maximizing distributionQ2,

PE,m ≤ exp{[−NEm(R1)]} + exp{[−NEw(R2)]};

PE ≤ exp{[−NEm(R1)]} + exp{[−NEw(R2)]}.

We know thatEw(R2) > 0 for 0 ≤ R2 < Cw, where Cw is the channel capacity of the wiretapper’s channel.

Hence, Theorem 6 says that there exists a code in a suitable ensemble such that the security constraint can be

satisfied (eachCu can approach capacity on the wire tapper’s channel) with arbitrary accuracy by increasing the

block-length; at the same time, the same code can satisfy thereliability constraint with arbitrary accuracy provided

the rateR1 is such thatEm(R1) > 0. From the properties of random coding exponents [22, Section 5.6], we see

that Em(R1) > 0 if

R1 < I(Q2; S) =
K

∑

k=1

Jw
∑

j=1

Q2(k)S(jw|k) log
S(jw|k)

∑

i Q2(i)S(jw|i)
.

Hence, the maximum secrecy rate achievable by a code from theensemble isI(Q2; S)−Cw. We immediately see

that for the special case of a wire tap channel considered in (3) secrecy capacity is achievable by some code in

the ensemble. In particular, if both the main channel and wire tapper’s channel are symmetric, secrecy capacity is

achievable.
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