
Let X, Y, and K be the stochastic variables associated with x, Thus we want to minimize P under the condition (6), which can 
y, and k. Let H(y) be the entropy of Y when nothing is known be rewritten as 
about k. Let H:)(y) be the conditional entropy of Y for a given N-l 
x, after i pairs (3,~~) have been intercepted. Let H(k) be the 
entropy of K. Smce f(x, k) is an unknown function if k is 

II pi=;. (7) 
i=O 

unknown, this equation from [2] is valid: We now use Lagrange multipliers to choose the pi so as to 

ij$o Z@(Y) <H(k). (9 
minimize P in (3) subject to the constraint (7). The answer is that 
we should choose 

The number of keys is finite, although large, so the sum in (1) is pi=~-‘/N (8) 
also finite. Then most terms are very small or zero. Let pi be the and then 
maximum probability that C chooses a key k that yields the 
correct y’ for x’ when i pairs (x,y) have been intercepted. A 
slight modification of the lemma in [ 1, p. 4101 yields 

min (P)=min 
( ) 

+ ;ztpi = L-‘/N. 

pi > 2; H(i)(y) (2) This is hardly a surprising result. To check it, consider the cases 
with equality if and only if y]x has a rectangular density func- N = 1 and 2. N = 1 is the situation when x, is a password which 
tion which is independent of the value of x. will never be intercepted, but C nevertheless tries to impersonate 

A very small H,“](y) then means that pi is close to one. In A. Equations (8) and (9) state correctly that the probability of 
practice, we are hardly interested in having an authentication success for C is l/L if all the passwords are equally probable, 
function f that makes it highly likely that C will succeed in and this probability is a minimum. N =2 is the case treated in 
substituting his x’ for most of the xi. So f is most sensibly [ 11. Equations (8) and (9) state that the probability of success for 
constructed in such a way that H,(‘)(y) = 0, if i > N. Then the rest C is L- ‘I*, which is the result obtained in [l]. 
of the H,(‘)(y) can be made as large as possible, thereby making The consequences of (8) and (9) for f are that if we retain the 
it possible to have pi small for i <N. Such an f will be the best picture introduced in [ 1, Fig. 21 of bundles of keys leading from 
choice for exactly N messages. If there are more than N each x to different y, then we get the following rule. If we choose 
messages then pi = 1 for the last ones, which amounts to total risk i different x and one key at random, consider the i bundles of 
of fraud. If only n <N messages are sent, a slightly better bound keys which lead from these x and contain the chosen key. There 
for pi in (2) could have been obtained with another f. should then be exactly L cN--i)iN keys, including the chosen one, 

We now want to maximize the security of N messages, i.e., N which appear in all i bundles. Another way to put this is to say 
samples of the stochastic variable X, which means that we want that the intersection of i different G(xj,yj) should contain 
to minimize the average risk 

LW-O/N keys. 

P= + ;&. (3) 
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1. i=O 

with equality if and only if the variables y Ix for i = 0, 1, * * * , N - 1 
have a rectangular density function. Thus f should be con- 
structed to yield such a density function. 

For simplicity, all intercepted pairs are supposed to be dif- 
Convolutional Encoding for Wyner’s Wiretap 

ferent, i.e., no x is sent twice. Alsop,= 1, since H,‘N)(y)=O. Let 
Channel 

Li denote the number of keys that are still possible choices for ERIK VERRIEST AND MARTIN E. HELLMAN, 
the correct key after i interceptions of pairs (x,y =f(x, k)). Thus SENIOR MEMBER, IEEE 

Lo=L and L,=l. (If two keys ki and 4 have f(x,ki)=f(x,h) 
for all x, then ki and 4 are considered as the same key. L is the Absrmcr-The wbetap channel introduced by Wyner is studied for the 
number of different functions f that the set of keys can produce.) special case when the main channel is a noiseless bii channel and tbe 

We now suppose that the keys have a rectangular distribution wiretap channel is a binary symmetric channel. With a rate-one convolu- 
function, since any other distribution would be more advanta- tional eneuder, the steady-state tme&ainty of the wiretapper is sbowu to 
geous to C. Furthermore, we suppose that f is constructed to 
yield equality in (4). Then Li is independent of both the chosen 

depend only on the constraht length Y of tbe code, not on tbe specific taps, 
and is complete on k successive bits provided k GY. During tbe initial 

key and the sequence of received xi, and so is Li+, indepen- 
dently of the value of xi+ t. So of all Li keys that remain after i 

transient period, the rate of growth of uncertainty does depend on the tap 
commtions of the shift register. 

interceptions Li+ , can not be ruled out after the next intercep- 
tion, since they all produce the same correct yi+ t for the given I. INTRODUCTION 
xi+ ,. Thus Li+ , keys can be safely used to produce a correct y;. 
But C doesn’t know which one to choose from the Li possibili- The wiretap channel, introduced by Wyner [l], is an interest- 
ties. This means that ing case of a broadcast channel [2], [3] in which the information 

L,+l 
flow to one receiver is to be maximized while the information 

Pi=r’ 

Sopo=L,/L andp,-,=1/N. Since Li+,=pi.Li, we also get 
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L ---- ----------- ---------, 

ENCODER 

I L------ ------------------------ 

H( U,“,‘; I Y) =  H(D,“++f). (8) 

I I Proof There is a 1: 1 correspondence between y and i(y), 
L----------------------l the response of the decoder to the y sequence, so that 

DECODER I---- ---I 

j e,-L--+, H( U;$‘ I Y) =  H( U,$‘ 10) (9) 
and, by linearity, 

r i=u@d, 
Fig. 1. Convolut ional encoder, feedback decoder, and wiretapper. and hence 

H( &‘$‘I 0) =  H(D,“++;). (10) 
flow to the other receiver is to be minimized. The first receiver is Lemma 2: 
referred to as the legitimate receiver, and the second receiver is 
referred to as the wiretapper. The wiretap channel and variations &III H( Un”++,” 1  Y) =  v (11) 
thereof have received considerable attention [4]-[9] with the use 
of block codes. This note examines the use of convolutional 

Proof By Lemma 1, we are concerned with 

codes for the special case where the main channel to the legiti- H(D,“,+/‘)= H(S,(n+v)) (12) 
mate receiver is a noiseless binary channel and the wiretapper’s 
channel is a binary symmetric channel (BSC) with bit error rate 

where sd(i)=(&& ,; . . , d-“+ i) is the state of the decoder at 

e, as depicted in Fig. 1. 
time i when u=O (i.e., when driven by the e sequence). The state 

Because the main channel is noiseless, the encoder can operate 
sequence is a first-order Markov chain with 2’ states and state 

at rate one and is only used to compound the wiretapper’s 
transition matrix 

uncertainty. This additional uncertainty does not result from P=cP’+(l-E)Po 
lack of knowledge of the code, which is assumed to be publicly 

(13) 

known. Rather, it results from memory in the decoder, which 
where P” and P’ are the deterministic state transition matrices 

allows a small amount of uncertainty on each of the preceeding 
under e = 0 and e = 1, respectively. Because each state has one 

bits to concentrate in one portion of the message. The encoder 
predecessor under e=O and one predecessor under e= 1, P is a 

and the decoder used at the legitimate receiver are shown in 
doubly stochastic matrix (each column as well as each row sums 

Fig.1. Note that, without loss of generality, a,, and a, are 
to 1). The limiting state distribution vector p must be a solution 

assumed equal to one. 
[ 10, p. 2481 to 

The initial state of the encoder, s,(O) = (us, u - ,, . . . , u  _ y + t), is CL=tp, (14) 
also assumed to be public information, and the decoder is 
started in the same initial state ~(0) = s,(O). By linearity, we may 

and because P is doubly stochastic, one solution is 

take this common initial state to be 0 without loss of generality. /.&=(1/2’)1. (1% 
We  are interested in evaluating the wiretapper’s uncertainty Further, this is the only solution because each state is reachable 

concerning portions of the information sequence u after he has from every other state [lo, p. 2511. Hence the 2’ possible states 
observed all of y. Letting are equidistributed in the limit as n-+cc and the state entropy 

n+k, 
UPI+1 (“n+l,un+29’ * ’ &+k), (1) 

tends to Y. 

Theorem 1: 

and u=uoo and using similar notation for other sequences, we 
wish to evaluate 

H( K’:: t y) (3) Proof Lemma 2 establishes the theorem for k= v and 
under the assumption that each ui is an independent Bernoulli hence for k < v. (If a  sequence of k bits has maximal uncertainty, 
(l/2) random variable. so must any subset.) From Lemma 1 

Considering the case n = 0, it is seen from Fig. 1 that there is a 
1: 1 correspondence between x k and I k and that yp+, is indepen- H( (I,“,‘/‘[ Y) =  H(D,“++/‘). (17) 

dent of xk. Therefore When k>v, 

H(UklY)=H(XklYk) (4) f+‘,“++:) = W X ’:,“) + H@‘,“,‘y”, ,I&%‘) (18) 
= H(Ek) (5) 
=  kh(ej \ I (6) \ I 

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. rr-25, NO. 2, MARCH 1979 235 

where E is the random error sequence on the wiretap channel 
and 

h(r)=-elog,e-(l-e)log2(1-•) (7) 
is the binary entropy function. Therefore, when n = 0 in (3), the 
wiretapper’s uncertainty is the same as if no encoding were 
performed (x,, = u,,). We  shall see, however, that, for large values 
of II (when the effect of the known initial state is unimportant) 
and for k <v, encoding is extremely useful in increasing the 
wiretapper’s uncertainty about I&!:. 

II. STEADY-STATE BEHAVIOR 
Lemma I: Let d  denote the response of the decoder to the 

sequence of errors e. Then 

= W % “) + ff(W:k+ ,I&(n + 4) 
=  H(D,$“)+(k-v)h(c). (19) 
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Taking the limit as n+cc and applying Lemma 2 yields the 
desired result: 

JiiI& H(U,“,+:lY)=v+(k-v)h(r). (20) 
It is somewhat surprising that the steady-state behavior is 

independent of the tap connections, a,,az,. . + ,a,- ,. It is not 
surprising, though, that the wiretapper’s fractional uncertainty is 
greatest on blocks of length v or less and drops toward h(e) on 
blocks much longer than v. 

III. TRANSIENT BEHAVIOR 
The wiretapper’s uncertainty about ui-“+, is equal to H(S(n)) 

when the decoder is driven from s(O) = 0” by an independent 
Bernoulli (E) sequence. While the steady-state behavior is inde- 
pendent of the tap connections, this is not true of the transient 
behavior. 

Unfortunately, the transient behavior cannot be simply cate- 
gorized. The maximal length shift register (MLSR) taps demon- 
strate a rapid growth of H(S(n)), but numerical evaluation 
showed that they do not always maximize H(S(n)) for every n. 

It is possible to show, however, that, as e-0 or as e+l, the 
MLSR taps maximize H(S(n)) for any fixed value of n. As e+O, 
the entropy H(S(n)) is dominated by the occurrence of a single 
one in the e” sequence. After a single one followed by all zeros, 
the feedback shift register goes into a cycle of length I,. For an 
MLSR, 1, = 2” - 1, while for any other tap connections, I, < 2” - 
1. The uncertainty of the phase of S(n) given that a single one 
(error) has occurred is therefore greatest for an MLSR. 

The slowest rate of growth of H(S(n)) has been found to 
occur for a, = a2 = . . . a,-, = 0 for v < 6, and we conjecture that 
this is always the case. We have established the following theo- 
rems, but in general the transient behavior appears difficult to 
characterize. 

Theorem 2: H(S(n)) is invariant to s(O) and under e being 
changed to 1 -E. 

Proof: By linearity, the state sequence is the sum (modulo- 
two) of the zero-input response to the initial state and the 
zero-state response to the input. The zero-input response to the 
initial state is deterministic and does not affect H(S(n)). 

Similarly, if e’ is Bernoulli (1 - E), then 
e-lee’ (21) 

is Bernoulli (e). By linearity, the zero-state response to e is 
therefore the sum of the responses to 1 and e’. Because the 
response to input 1 is deterministic, H(S(n)) is the same for 
inputs e and e’, with parameters e and 1 - z. 

Theorem 3: Whenal=a2=... =a,-,=O, 

~(S(kv+j))=(v-j)h(~(‘~))+jh(~(‘(~+’))) 

for k > 0 and 0 <j < v, where 

(22) 

,c*w = c(*(k- w*E (23) 

q*e2=E,(l-E2)+(1 -E&2 (24) 
and 

,(*I),,. (25) 

Proof Equation (24) says that el*eZ is the bias of a 
Bernoulli random variable which is the modulo-two sum of two 
independent Bernoulli random variables with biases ~1 and ~2. 
Equation (23) then says that E w is the bias of the sum of k 
independent Bernoulli (E) random variables. 

Whena,=a2=*.. = a,-, =0 and O<j <v, Fig. 1 shows that 

dku+j=ekv+j~e(k-I)v+j~. * * @q (26) 

SO d/w +j has a Bernoulli (e(‘ck+ ‘)> distribution. Similar1 l Y, the first 
j of dkV+j,dkV+j~,,~~~,d~k--l~,,+j+, are Bernoulli (e( ( +I))) and 
the last (v -j) are Bernoulli (c(*~)) random variables. Because no 
e, enters into more than one sum of the form (26), these random 
variables are independent. Thus 

H(S(kv+j))=H(D~~~i,,,+i+~)=(v-j)h(~(*k))+jh(~(*(k+‘))) 

as claimed. 
(27) 

The transient behavior is not too important for long messages 
where a sequence of random bits can precede the actual infor- 
mation, much as a trailer is used in error correcting convolu- 
tional codes. Better characterization of the transient behavior 
would be of interest, however, because it is a fundamental 
property of shift registers and likely to find other applications. 

IV. DISCUSSION 

If a rate-one convolutional encoder of the type studied is used 
to confuse a wiretapper and if his bit error rate z is small, the 
constraint length v must be large enough to prevent the wire- 
tapper from searching over the 2” typical sequences left after he 
has received y. This dictates that v be at least 100. 

It is interesting to contrast the behavior of the convolutional 
code studied with that of the feedback code obtained by inter- 
changing the encoder and decoder in Fig. 1. The wiretapper’s 
uncertainty still is equal to the entropy of the (new) decoder’s 
response d to the error sequence e. But now d,, depends only on 
e,“_“, and if (v+ l)h(e) < 1, the wiretapper’s uncertainty on even 
single bits will not tend to one as n-co. While this system is of 
less direct value, the properties of the d sequence are very 
interesting. As indicated by Shepp and Slepian [I 11, it is not 
Markov of any finite order, yet is “almost Markov” in many 
ways. For example, Z(D,,; D,,+,lD,“+‘/-‘) tends to zero as k+oo. 
In steady state, it is a B-process [12]. 

A final word of caution is in order. If the information 
sequence u is not totally random, but possesses redundancy, 
then either encoding operation may lower the wiretapper’s un- 
certainty, rather than raise it. This is because the encoding 
operation then serves as a convolutional joint source-channel 
encoder [ 131 and, if H(U) < 1 -h(e), the wiretapper can recover 
u reliably in spite of the errors on his channel! 
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