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The Wire-Tap Channel

By A. D. WYNER
(Manuscript received May 9, 1975)

We consider the situation in which digital data is to be reliably trans-
milled over a discrete, memoryless channel (DMC) that is subjected lo a
wire-tap al the receiver. We assume that the wire-tapper views the channel
oulput via a second DMC. Encoding by the transmitter and decoding by the
recetver are permitted. However, the code books used in these operations are
assumed to be known by the wire-tapper. The designer attempts to build
the encoder-decoder in such a way as to maximize the transmission rate R,
and the equivocation d of the data as seen by the wire-tapper. In this paper,
we find the trade-off curve between R and d, assuming essentially perfect
error-free”’)- transmission. In particular, if d ¢s equal to H s, the eniropy
of the data source, then we consider that the transmission 1s accomplished
i perfect secrecy. Our results imply that there exists a Cs > 0, such
that reliable transmission at rates up to C, is possible in approximately
perfect secrecy.

|, INTRODUCTION

In this paper we study a (perhaps noisy) communication system
that is being wire-tapped via a second noisy channel. Our object is to
encode the data in such a way that the wire-tapper’s level of confusion
will be as high as possible. To fix ideas, consider first the simple special
case depicted in Fig. 1 (in which the main communication system is
noiseless). The source-emits a data sequence Sy, Ss, - - -, which consists
of independent copies of the binary random variable S, where
r{§=0} =Pr{S =1} =3 The encoder examines the first K
source bits SX = (8y, - - -, Sk) and encodes S¥ into a binary N vector
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NOISELESS CHANNEL

{s.} {x} {8} (i) Set K = 1, and let N be arbitrary. Let Co be the subset of
SOURCE ENCODER DECODER pomm—— ' binary N space, {0, 1}, consisting of those N vectors with even parity
ﬂ (ie., an even number of 1’s). Let C1 € {0, 1} be the subset of vectors
with odd parity. The encoder works as follows. When 8; = 1, (z=10,1),
the encoder output XV is a randomly chosen vector in Ci. Thus, the
encoder is a channel with transition probability
BSC
. . 2-w-b x € C;
N = = = ’ ’
Pr (X x|8S; =} 'o, x & Cs,
{2} wire Tap fori = 0, 1. Clearly, the decoder can recover S; from X* perfectly, so
e 1Wi ) that P, = 0. We now turn to the wire-tapper who observes Z¥, the
ig. 1—~Wire-tap channel (special case). output of the Bsc corresponding to the input X¥. Let z € {0, 1} be
a vector of, say, even parity. Then
X¥ = (X,, ---, Xx). XV in turn is transmitted perfectly to the decoder PriSs = 01ZY = _p the Bsc makes an
via the noiseless channel and is transformed into a binary data stream riSy=0[ZY% =2} = Pr even number of errors
Sk = (&), -+, Sk) for delivery to the destination. The “‘error proba- N N ) o ) i
bility’’ is defined as = Q.Mo A j v Pl — po)¥—i = § + 3(1 — 2po)".
1 K - j even
P, == Pr {Se = Si}. 1 ) ) . . L
K ».m_ S ¢l M I'he last equality can be verified by applying the binomial formula to

The entire process is repeated on successive blocks of K source bits.
The transmission rate is K/N bits per transmitted channel symbol.

The wire-tapper observes the encoded vector X¥ through a (memory-
less) binary symmetric channel (Bsc) with crossover probability
po(0 < po = %). The corresponding output at the wire-tap 1is 2%
= (Zy, -+, Zy),sothat forz,z=0,1 1 £ n = N),

HUH‘ ”Nz = N_Nw_ = &u = AH - Nuovmak |+| EOAH - mn.uv.

N
[0 = po) & 2po} = 2

Then

s (V) ait - e -

Jeven N

(1 —po+1p)¥ + (1 = po— 1:pd¥
— 14 (1—2p)"
8. P. Lloyd). Similarly, for z € {0, 1}* of odd parity,

A _ T —— e g . S— . e e <

We take th uivocation
¢ take the equivocatio the Bsc makes an

o = N o= =
_ brisi = 0|2 z} = Pr * odd number of errors
as a measure of the degree to which the wire-tapper is confused. The ‘ Therefore, for all z € {0, 1}7,
logarithms in H are, as are all logarithms in this paper, taken to the ; v . 1 .

’ . Vo= = 5 — H —_— w N
base 2. The system designer would like to have P, close to zero, with H(S:|Z z) = hl} — 3( Pl

N wEijzv @)
}— 31— 2p0".

K/N and A as large as possible.
Consider the following schemes:

() Set K =N =1, and let X, = 8. This results in P, =0,
K/N = 1,and A = H(X1|Z1) = h(po), where

B(A\) = — alogh — (1 — ) log (1 — N), 0=\N=1, (3)
(take 0 log 0 = 0).

;umm THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975

s0 that
A= H{S:1ZV) = h[}

—1= mmmnv“

— 31 — 2po)™]

as N — =,

Thus, as N —, the equivocation at the wire-tap approaches the
unconditional source entropy, so that communication is accomplished
in perfect secrecy. The ‘“‘catch” is that, as N — «, the transmission
rate K/N = 1/N — 0.
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A central question to which this paper is addressed is whether o
not it is possible to transmit at a rate bounded away from zero, ani
yet achieve approximately perfect secrecy, i.e., A &2 H(S,). Befor
giving the answer to this question, we shall describe the more genen
problem that is addressed in the sequel.

Refer to Fig. 2. The source is discrete and memoryless with entrop
Hg. The “main channel” and the “wire-tap channel” are discre:
memoryless channels with transition probabilities @ (-]-) ani
Qw(-|.), respectively. The source and the transition probabilities §.
and Qw are given and fixed. The encoder, as in the above example, is:
channel with the K vector S¥ as input and the N vector XV as output
The vector XV is in turn the input to the main channel. The mai
channel output and the wire-tap channel input is YV. The wire-typ
channel output is ZV. The decoder associates a K vector §x with Y
and the error probability P, is given by (1). The equivocation 4
given by (2), and the transmission rate is KHs/N source bits pu
channel input symbol. Roughly speaking, a pair (R, d) is achievabl:
if it is possible to find an encoder-decoder with arbitrarily small P.
and KHg/N about R, and A about d (with perhaps N and K ven
large). Our main problem is the characterization of the family a
achievable (R, d) pairs, and such a characterization is given in Theoren
2. It turns out (Theorem 3) that, in nearly every case, there existsu
“secrecy capacity,” C, > 0, such that (C,, Hs) is achievable [whil
for B > C,, (R, Hs) is not achievable]. Thus, it is possible to reliably
transmit information at the positive rate C, in essentially perfer
secrecy.

For the special case of our introductory example (Hs = 1, Q
corresponding to a noiseless channel and Qw to a Bsc), the conclusio:
of Theorem 2 specializes to the assertion that (R, d) is achievable i
andonlyif0 £ R £1,0 £d £ 1,and Rd £ h(po). Note that scheme
(1) suggested above for this special case asserts that B = 1, d = A(p

¢ XY | MAIN CHANNEL | ¥N

Qm

wx
SOURCE

ENCODER

DECODER

WIRE—TAP CHANNEL
Qw

|

zN

Fig. 2—Wire-tap channel (general case).

1358 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975

e S

g e

,

—-———

is achievable. From Theorem 2, this value of d = h(po) is the maxi-
num achievable d, if R = 1. Scheme (i7) above asserts ﬁ:md R =0,
i=1 is achievable, but this is distinctly mCUovZBm_.mEom from
Theorem 2, R = h(po), d =118 achievable. Thus, reliahle trans-
mission at a rate h(po) is possible with perfect secrecy, and C, = h Q.;v.

An outline of the remainder of this paper now follows. In mwogﬁ:
I, we give a formal statement of the Eov_oa.ﬁ and state the mamn
results (Theorems 2 and 3). In Section :H. we give a va.com of Hﬁmogg
2 for the special case discussed above (main channel noiseless, éﬁm-g%
channel a Bsc). In Section 1V, we prove the converse half of Theorem 2,
and in Section V the direct half of that theorem.

Il. FORMAL STATEMENT OF THE PROBLEM AND SUMMARY OF RESULTS

In this section we give a precise statement of the problem that we
«tated informally in Section I. We then summarize our .ammc;m.

First, a word about notation. Let U be an arbitrary finite mma.. Denote
its cardinality by |u|. Consider uY, the set of 2 vectors with com-
ponents in U. The members of U will be written as

u¥ = Aif Uy * 0% QZV.

where subscripted letters denote the oogcososam and Uo._&mom super-
scripted letters denote vectors. A similar convention applies to random
vectors and random variables, which are denoted by upper-case wmgma.m.
When the dimension N of a vector is clear from the context, we omit
superseript.

%w,waﬂmmdaomﬂ variables X, Y, Z, etc., the :oﬁm‘&os EANY H(X #. H.\Y
HX; V), I(X; Y|Z2), etc., denotes the standard Hiolswﬁos quantities
a defined in Gallager.! The logarithms in these @,.E:Sa_mm are, as are
all logarithms in this paper, taken to the base 2. 3.:9:%_ for n an w‘M 4,
5 -, we say that the sequence of random variables {X:}7=1 18 a
“\arkov chain” if (X1, X, -+, Xji-1) and (X1, -+ Xn) are condi-
tionally independent, given X;(1 < j < n). We make repeated use of
the fact that, if X4, X2, X5 is a Markov chain, then

mANw_N: va = mANu_va n%v

At this point we call attention to Appendix ? in .ﬁ‘Eow the data-
processing theorem and Fano's inequality are given in several forms.

We now turn to the description of the communication system. We
assume that the system designer is given a source and two channels
that are defined as follows.

where the S; are
that take

(i) The source is defined by the sequence {8}y
independent, identically distributed random variables
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values in the finite set 8. We assume that the probability law th
defines the {Si} is known. Let the entropy H(S:) = Hs. In Appendi
C we show how to extend the results of this paper to arbitrary station
ary finite alphabet ergodic sources.

(i1) The main channel is a discrete memoryless channel with finit-
input alphabet %, finite output alphabet Y, and transition probabilitr
Qu(y|z), z € X, y € Y. Since the channel is memoryless, the trans:
tion probability for N vectors is

0 (v1x) = IT Queynlza). i

nml

Denote the channel capacity of the main channel by Cu.

(i1t) The wire-tap channel is also a discrete memoryless channe.
with input alphabet Y, finite output alphabet 3, and transitio:
probability @w(z]y), ¥y € Y, z € 3. The cascade of the main chann
and the wire-tap channel is another memoryless channel with transitior
probability

Quwzlz) = L Qw|y)Qu(ylx). A

yey

Occasionally, when there is no ambiguity, we use the transition proby-
bility of a channel to denote the channel itself. Let Cyw be the capacit
of channel Qw.
With the source statistics and channels @ and Qw given, th-
designer must specify an encoder and a decoder, defined as follows
(tv) The encoder with parameters (K, N) is another channel witi
input alphabet $X, output alphabet «¥, and transition probs
bility ¢e(x|s), s € 8%, x € ¥¥. When the K source variable:
SK = (S,, -+, Sk) are the input to the encoder, the output is the
random vector X¥. Let Y¥ and Z¥ be the output of channels QLY ani
&, respectively, when the input is X¥. The equivocation of the
source at the output of the wire-tap channel (corresponding to3
particular encoder) is

Ja\

|W K|7ZN {4
A 2 2 H(SK|ZY).

We take A as our criterion of the wire-tapper’s confusion. From th:
system designer’s point of view, it is, of course, desirable to make 3
large.

(v) The decoder is a mapping

fo: y¥ — 8K, {8
Let § = (Sy, -+, Sx) = fo(Y). Corresponding to a given encoder ani

1360 THE BELL SYSTEM TECHNICAL JOURNAL, OCTOBER 1975

g,

decoder, the error-rate is

N
Po= % T PriSi =S} (8b)
E=1 .
We refer to the above as an encoder-decoder (K, N, A, P.).* The
applicability of the above to the system in Fig. 2 should be obvious.
Next, we say that the pair (R, d) (where R, d > 0) is achievable if,
for all € > O, there exists an encoder-decoder (N, K, A, P,) for which

e (99)
AZd— ¢ (9b)
P, = e (9¢)

Our problem is to characterize the set ® of achievable (R, d) pairs.
Let us remark here that it follows immediately from the definition
that ® is a closed subset of the first quadrant of the (R, d) plane.
Before stating our characterization of ®, we digress to discuss a certain
information-theoretic quantity that plays a crucial role in our solution.

Consider the channels Qu, @w, and Quw defined above. Let px(z),
€ %, be a probability mass function and let X be the random
variable defined by

Pri{X =z} =px(z), 2& X

Let Y, Z be the outputs of channels @y and Quw, respectively, when
X is the input. For R = 0, let ®(R) be the set of px such that
[1X;Y) 2 R. Of course, ®(R) is empty for B > Cy, the capacity of
channel Q. Finally, for 0 £ B = Cu, define

T(R) & sup I(X;Y|2).

px EF(R)

(10)

We remark here that, for any distribution px on &, the corresponding
X. Y, Z forms a Markov chain, so that the definition of mutual infor-
mation and (4) yield )

1(X;Y|Z) = H(X|Z) - HX|Y, Z)
H(X|2) — H(X|Y) =

I(X:Y) — I(X;Z). (1)
Thus, we can write (10) as

TR)y= sup I(X;Y|Z)=

sup [I(X; V) —-I(X;2)]
px €EF(R)

px EC(R)

(12)

* This should be read as “. .. an encoder-decoder with parameters (K, N, a, P.).”’

1361
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As an example, suppose that & = Y = 3 = {0, 1}. Let Qu be a
noiseless (binary) channel, and let Qw be a binary symmetric channel
(Bsc) with crossover probability po. Then for arbitrary px,

I(X;Y)~1(X;Z) = HX) - [H(Z) - HZ|X)]
h(po) + H(X) — H(Z) = h(po),

where #(-) is defined in (3). The inequality follows from the well-
known fact (see, for example, Ref. 2) that the entropy of the output
of a Bsc, i.e., H(Z), is not less than the entropy of the input, H(X).
Further, H(X) = H(Z) if and only if px(0) = px(1) = 3. Since this
distribution belongs to ®(R), for all R, 0 £ R < Cy4 = 1, we conclude
that, in this case,

I'(R) = h(po),

In Appendix B, we establish the following lemma concerning I'(E).

0=sR=Cn (13)

Lemma 1: The quantity T'(R), 0 £ R = Cy, satisfies the following:

(i) The “supremum’ in the definition of T[(10) or (12)] is, in facl,
a mazimum—i.e., for each R, there exists a px € ®(R) such
that (X ;Y|Z) = T(R).
(i7) T(R) is a concave function of R.
(721) T(R) s nonincreasing in E.
(#v) T(R) s continuous in R.
() Cayr Z T(R) 2 Car — Cuw, where Cy and Cyw are the capact-
ties of channels Qy and @Qyw, respectively.

We can now state our main result, the proof of which is given in the
remaining sectlons.

Theorem 2: The set ®, as defined above, is equal to ®, where

®E (R d: 0RO Rd < HsT(R)}. (14)

0=dz=s Hs,
Remarks:

(1) A sketch of a typical region ® is given in Fig. 3. In the above ex-
ample (Qr noiseless and Qw a Bsc), ['(R) = h{(po), & constant, so that
the curve Rd = HsT'(R) is a hyperbola. Observe that in this case
the region ® is not convex. This is in contrast to the up-to-now essen-
tially universal situation in multiple-user Shannon theory problems,
where the solution is nearly always a convex region. Whether or not
T'(R)/R is always convex, as it appears in Fig. 3,1s an open question.

(2) The pointsin @ for which R = Cj correspond to data rates of
about the capacity of Q. This is clearly the maximum rate at which
reliable transmission over Qu is possible. An equivocation at the
wire-tap of about HsI'(Cy)/Cx is achievable at this rate. An increase
in equivocation requires a reduction of transmission rate.
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(3) The points in ® for which d = Hg are of considerable interest.
These correspond to an equivocation for the wire-tapper of about
Hs—i.e., perfect secrecy. A transmission rate of

C,= max R

(R, He) ER

is therefore achievable in perfect secrecy. We call C, the “‘secrecy
capacity” of the channel pair (Qum, Qw). The following theorem
clarifies this remark.

Theorem 3: If Car > Cuw, there exists a unique solution Csof
C, = T(C,). (15)
Further, C, satisfies
0 < Cy— Cuw ST(Cy) £Cs £ Ch,y
and C, is the mazimum R such that (R, Hs) € ®.
Proof: Define G(R) = T(R) — R, 0 = R = Cu. From Lemma 1 (v),

QAQRV = HJAQEV - QNS M Ov

(16)

and
G@O)=T0)2Cy — Cuw > 0.

Since by Lemma 1, (s%) and (@), G(R) is continuous and strictly
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decreasing in R, a unique C, € (0, Cy] exists such that G(C,)
= I'(Cy) — C, = 0. This is the unique solution to (15). Inequality
(16) follows from C, € (0, Cx] and Lemma 1, (4%) and (v). Finally,
from (15) and (16) we have (C,, Hs) € ®& = ®. Also, if (Ry, Hs) € ®,
then HsR, < HsT'(R) so that G(R,) = 0. Since G(R) is strictly
decreasing in R, we conclude that By £ C,. Thus, C, is the maximum
of those R for which (R, Hs) € ®, completing the proof.

. (4) It is clear that the source statistics enter into the solution only
via the source entropy Hs. We also remind the reader that the fairly
.23@5 extension of Theorems 2 and 3 to a stationary, ergodic source
1s given in Appendix C.

(5) 1f we define P.., the “wire-tapper’s” error probability, as the
error rate at a decoder built by the wire-tapper [defined analogously
to (8)7], then it follows from Fano’s inequality (see Appendix A) that

A £ h(P.w) + Pulog |8].

Thus, m.rms.mmw value of the equivocation A implies a large value of
P, (which the system designer will find desirable).

lll. PROOF OF THEOREM 2 FOR A SPECIAL CASE

In this section we prove Theorem 2 for the very special case dis-
cussed in Section I. All alphabets 8, X, U, 3 are equal to {0, 1}. The
source {Si} satisfles Pr {S; = 0} = Pr {Siy = 1} = 1. Channel Qy is
noiseless, i.e., Q@u(y|z) = 8,,; and channel Qw is a Bsc with crossover
probability ps (0 < po £ 1), 1e.,

) , @QAN_“S = (1~ Eovmc_n + po(l = §y.0). (17)
We show here that (R, d) is achievable if and only if
R=Cu=1 d=Hs=1, Rd = h(pd). (18)

Since, for this case, I'(R) = h(po), this result is a special case of the
as-yet-unproven Theorem 2. We begin with the converse (“only if”)
part of the result. Let SX, X¥ Z¥ correspond to an encoder-decoder
(N, K, A, P,) (note that YV = XV). Then, making repeated use of
the identity H(U, V) = H(U) + H(V|U), we can write (dropping
the superscript on vectors)
- KA = H(SX|ZV) = H(S,2) — H(Z)
= H(S,X,Z) - HX|S,Z) — H(Z)
H(Z|X,S) + HX,S) - HX|S,Z) — H(Z)

- H(Z|X) + H(S|X) + HX) — H(X[S,Z) — H(Z)
= Nh(po) + H(S|X) + [HX) — H(Z)] — H(X|S,2). (19)

These steps are justified as follows.

(a)
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(a) From the fact that (S, X, Z) is a Markov chain and (4), so that
H(Z|X,8) = H(Z|X). .

(b) Since X, Z are the input and output, respectively, of a Bsc,
H(Z|X) = Nh(po), regardless of the distribution for X.

Now from Fano’s inequality [use ineq. (78) with ¥V = X7, we have
H(S|X) £ Kh(P,). Further, the entropy of the output of a Bsc 2 the
entropy of the input [this follows from Mrs. Gerber’s lemma (Ref. 2,
Theorem 1)], so that H(X) — H(Z) = 0. Finally, H(X|S,Z) 2 0.
Thus, (19) yields for any encoder-decoder (K, N, A, P.),

KA = Nh(po) + Kh(P.),
or

K ra—np1 s ho. (20)

Now suppose that (R, d) is achievable. It follows from the ordinary
converse to the coding theorem (Ref. 1, Th. 4.3.4, p. 81) that
R € Cy = 1. Further, since A £ Hs = 1, we conclude that d < 1.
Finally, if we apply (20) to an encoder-decoder (¥, K, A, P,) that
satisfies (9) with ¢ > O arbitrary, we have

(R — Ol(d — & — k(9] = h(po).

Letting ¢ — 0 yields Rd £ h(po). Thus, we have established the
converse of Theorem 2, i.e., that an achievable (R, d) must satisfy (18).
We begin the proof of the direct half of Theorem 2 with a digression

about group codes for the Bsc. Let G € {0, 1}¥ be a group code (i.e.,
a parity check code) as defined for example in Ref. 1, Chapter 6, or
Ref. 3, Chapter 4. The group code G has M = 2¥/|(| cosets. Denote
the cosets by Co = G, Cy, Cy, -+, Cu—1. Of course, the cosets are
disjoint and

M-1

Co C; = {0, 1}7.
Let A be the word error probability when group code G (or for any of
the cosets) is used on a Bsc with crossover probability po, with maxi-
mum-likelihood (minimum distance) decoding. Thus, for each coset
C,0 £i < M — 1, there exists a decoder mapping D:: {0, 1}V — C,,
such that if X is the input to a Bsc with crossover probability pe, and
Z" is the corresponding output, then forallx & C;, 0 =1 = M — 1,

Pr {D;(Z¥) = X¥|X¥ = x} = \
Thus, regardless of the probability distribution for X¥,
Pr {D.(ZV) = XV|XVN € Ci} = M\
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Letting y(x) = 7, forx €C,, 0<i < M — 1, we have, from Fano’s

inequality [use ineq. (76) with U = XN V=2V U= Di(Z¥)],
HEXY[ZY ¢ =14) = h(\) + Alog | C4f.
Therefore, for any X distribution ASEor induces a distribution of y),
HXY[Z¥, ¢) = h(\) + Nlog |G. (21)

We conclude this digression by stating as a lemma the well-known
result of Elias that there exists a group code for transmitting reliably

over a BSC at any rate up to capacity. A proof of this result can be
found in Ref. 1, Section 6.2.

Lemma 4: Let 1 > 0,1 < 1 — h(po) be arbitrary. Then, provided N is
sufficiently large, there exists a group code G of block length N with

[G = 2% such that, on the Bsc wilh crossover probability p., the error

probability X £ €.
We now prove the direct half of Theorem 2 for our special case by
showing that any (R, d), where R is rational, which satisfies

R-d = h(po), (22a)
0=d<il, (22b)
0£fRs1 (22¢)

is achievable. Thus, for (R, d) satisfying (22), and arbitrary ¢ > 0,
we must show the existence of an encoder-decoder (N, K, A, P,) that
satisfies (9). We now proceed to this task.

Let K, N satisfy

vk (23)

Let G be a binary group code with block length N and with |G|
= 20K Thus, G has M = 2% cosets {C.}}, We can assume that
the set 8% = {0, 1}¥ is the set of integers {0,1, ---, M — 1}. We
construct the encoder such that when the source vector SX = 7,* the
encoder output X¥ is a randomly chosen member of coset Ci—i.e.,

1 1
= = 9~ (V—K) ,
Pr(X¥ =x|S=i} =410, ~ (@~ 27 fox€C,
0, z & C;,
0 <7 = M — 1.Since S is uniformly distributed on {0, 1, - - -, M — 1},
X¥ is uniformly distributed on ¥ = {0, 1}¥. Thus, in particular,
H(XV)y = H(ZV) = N, (24)

* This is an abuse of notation. A more precise statement is that SX is a binary
representation of 7.
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where, as always, ZV is the output of the wire-tap .ormsb& Erm:. X¥
is the input. Also let us observe here that the Qcmssnx ¥ (X¥), defined
in the above digression, is identical to S¥. Thus, (21) yields

H(XV|ZV, 8K) £ h(N) + AN — K), (25)

where \ is the error probability for zﬁ group code O.
We now turn to the decoder. Letting D(y) = 1, when y € C;, we
conclude (since the channel Qu is noiseless) that

P, =0. (26)

Since (23) and (26) imply (9a) and (9¢), it aon.Em 6 show that a G
exists such that the resulting encoder-decoder will satisfy (9b).

We now invoke (19), which is valid for any m:oo%?a.moomwﬁ
Substituting (24) and (25) into (19), and invoking (26), which implies
H(S|X) = 0, we obtain

>wﬁmvisva%|yﬁmluv. 27)

Now, from (22a) and (23), we have

h(po
N oy = 222 — g,

and from (23),

Thus, (27) yields
sza- [ (3-1)] -

Finally, since from (23) and (22a) we have

_Q_ = 9N-K < MZCI:GSEﬁ

we can invoke Lemma 4 with r =1 — hipoy/d < H — h(po) .ﬁ?oﬂs
(22b)] to assert the existence of a group code G with X sufficiently
small to make the term in brackets in (28) Ma. Then A = d — ¢
which is (9b). This completes the proof of the direct half.

IV. CONVERSE THEOREM

In this section, we establish the converse gmo.amg that the family
of achievable rates @ is contained in @ as defined in (14). Suppose that
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(B, d) € ® That R =< Cy follows from the ordinary converse to the

coding theorem (Ref, 1, Theorem 4.3.4, p. 81). That d =< Hj; follows
from

1 , 1 .
= Nm:ij,J =< Nlmm:mﬁ =
Thus, it remains to show that Rd < = HsT(R). We do this via a lemma,

the proof of which is given at the ooso_Cm_o: of this section.

Lemma 5: Let SX X¥

YY, ZY correspond to an encoder-decoder
(N, K, A P,). Then

. K 1 N
A@v N([a ﬁb - &mwmvu_ Nl(n M AN:V M\:_Nf %:I_vv AMOWV
.. K N
W s —o(P)] = 4 T I(Xu; Yafye, (29b)
where
8(FP.) = h(P.) + P.log |8}, (29¢)

and where the n = 1 term in the summations of (29a,b) is given the
obvious interpretation—i. e, that I(Xy; Y,|Z,, Y9 = I(X1; Y112y, ele.

Now forn =23, ..., 2“ any y € Y=, set
an(y) = I(X,; V.|]Y*! = y). (30a)
Also let
I(X,; YY), (30b)

It follows from the definition of ®(R) in Section II that the distribution
p1, defined by

pi@) & Pr{X, =z}, 2 € 1,
belongs to ®(«,). Similarly, for2 < n < N, withy € Y fixed, define

Pry(@) EPr{X,=z|¥i=y] z€&

Then p.y € ®la.(y)]. Thus, from (10) and the fact that channels
Q5 and Q¥ are memoryless,

Tl) z I(Xy; Y| Zy), (31a)
and for2 < n < N,y € yr,

Mla(y)] 2 Z.Ni YilZ,, Yt =y). (31b)

It follows that the right member of (29a) is (giving the n = 1 term
the obvious interpretation)
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L& 1., v, 2., Yo
N .=
= LS T P (Yt =y (X ValZa Y = )
N n=1yEcyYn
2 Ly 5 Py = g)Ten(®)] (32)
S 3p:
Cr FE T Priye - E,i

1 -
= = Y Y v
r AZ M IX )
(d)
Lo (Kt - o). |
Step (a) follows from (31), step (b) from the concavity of I' [Lemma

1(z2)], step (c) from the definition of a,, and m.nmv (d) from Q,.og.msm
the monotonicity of T' [Lemma 1(¢i7)]. Applying (29a) to (32) yields

Corollary 6: For any encoder-decoder (N, K, A, P.),

N Nl . ww
m? lm%&zMﬂ Tif mQuL Av

We now show that, if (R, d) € ®, then Rd £ HT(R). Let
(R,d) € ®, and let ¢ > 0 be arbitrary. Apply Oow,o:.m:.% 6 to the
encoder-decoder (N, K, A, P,) that satisfies (9). Inequalities (33) and
(9) yield

(R— o[(d— ¢ —8(] < HsT[(R — &) — 8(e)). (34)
Letting ¢ — 0 and invoking the continuity of T' [Lemma :%vu. yield
Rd < HsT(R), completing the proof of the converse. It remains to
prove Lemma 5.
Proof of Lemma &:
(1) Let S, XV, Y¥, ZV correspond to an encoder-decoder (N,K, A, P,).
First observe that

]mAmkaZ MZV mk_“Zv
< h(P) + P.log (|8| — 1) = 5(P)). (35)
Inequality (a) follows from Fano's inequality mCmm. (78) with V = Y¥].
Next, using the definition of A (7) and (35), write
KA = H(SK|Z¥) < H(SK|ZN) — H(SK|ZV,YN) + K&§(P.)
I(S%; Y¥|ZY) + K5(P.)
I(XX,YY|ZNYy 4+ K&(P,). (36)

IA
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Mwwo_mw.a m:ommm:ﬂ% in (36) follows from the data-processing theorem
inee given =z, (YY, XV, 8%} is a Markov chain (Appendix >v~

sposing the K5(P.) term in (36) and continuing: .
K[A — 8(P)] < I(X¥; Y¥|Z¥)

= HXVY|ZN) — H(XY|Z¥, YY)

= HXN|Z¥) — HXY|YY)
I(XV, YY) — I(XN; ZY)
H(YY) — H(ZY) + H(Z¥|XY) — H(YV|X¥)

b) N
) (H(Y.|Y*Y — H(Z,|Z%Y)

n=

. + H(Z.|X.) — H(YW| XW)]
= L HY. Y™ = H(Z. |27, YY)

d N + H(Za|X0) — H(Y 4| X4)]
= M WNNA%:;%mi_V — mAN:_waluv l_l mANz_N‘: %SIJ

n=1
v + H(Y, | X, Y]
= X [I(X., VoY) = [(X.; 2, Y]

n=1

N
= & [HX,|Z, Y = H(X, [V, Y*)]
(&) N
= T [H(X,[Z,, Y™ = H(X| Vs, Zo, Y]

n=1

N

= HNAN:M M\:*N:N &=|_v.

n=

(37)

The steps in (37) that require explanation are:

(a) that follows f NoYN i |
that AMV wosm rom the fact that X¥, YV, Z¥ is a Markov chain
(b) that follows from the standard identity

H(UY) = & H(U.| U™,

n=l

and the fact that channels Q) and Q) are memoryless;
MMVV M”mM Momoém from the fact that conditioning decreases mbwaovvﬁ
at follows on applying (4) to the Markov chai w1 Y,
2, (Y, Xo, Y, Z0); e
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_

~_

(e) that follows from the fact that, given Y, (Xn, Yo, Zn) 18 &
Markov chain.

Since (37) is (29a), we have established part (1) of Lemma 5.
(i) With S¥, XV, Y, Z¥ as in part (1) write

H(SK) = I(SK; YY) + H(S*|YY)
I(XV; YY) + Ka(Po),

where the inequality follows from the data-processing theorem (since
Sk, XN YV, isa Markov chain) and from Fano’s inequality as in (35).

Since H(SK) = KHs, (38) yields
K[Hs — 8(P)] = T(X¥;Y7)

(38)

1A

2 S Y — HYA X))

- ~M<“ ﬁmﬂw\:_%qsl_v — mﬂ<‘~#x~_u ,‘:l_vu

n=1

= S (X, Ya|Y). (39)

n=1

Step (a) follows on application of HYY) = 2. H(Y.|Y™Y), and the
memorylessness of channel Q§", and step (b) from the fact that
Y-, X, Yaisa Markov chain. Inequality (39) is (29b), so that the

proof of Lemma 5 is complete.

V. DIRECT HALF OF THEOREM 2
In this section we establish the direct (existence) part of Theorem 2,

that is, ® € ®. The first step is to establish two lemmas that are
valid for any encoder-decoder as defined in Section IL.
Lemma 7: Let 8%, XV, YV, Z¥ correspond to an arbitrary encoder-decoder
(N, K, A, P.). Then

KA 2 H(SK|ZV) = H(8%) + I(XV; ZV|8K) — I(XV;Z¥). (40)

Proof: By repeatedly using the identity HU,V)=HU) + HWV1U),
we obtain (we have omitted superscripts)
KA = H(S|Z) = HS,Z) — H(Z)

=H(,Z,X) — H(X|S,Z) — H(Z)
H(Z|X,S) +HX,S) — H(X!S,Z) — H(Z)
H(Z|X,S) + H(S) + [HX|S) — H(X|S,2)] — H(Z)
H(S) + I(X;Z]S) — [(H(Z) — H(Z{X, S)).

I

(41)

1371
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S .
Wwwu%mgmﬁm_ X, Z is a Markov chain, H(Z|X,S) = H(Z|X) [by
- L'hus, the term in brackets in the righ : i
comploting the mant e right member of (41) is I(X; Z),
. We now give some preliminaries for the second of the two lemmas
or the remainder of this section we take the finite set X to Um

{1,2,---,A}. Let X*bear i
b = yAj. andom variable t i
with probability distribution ° that takes values in

Pr {X* =

1=:<4.

* B

Ekmwv‘ = =
7K

ﬁﬂa ¥ Nw:.m zZ* vm the output of channels @y, and Qy w, respectively

Mo Mﬂmﬁ VM ﬁﬁw*SWwd. As always, Quw 1s the cascade of Qu and @e.

s , , is a M 1 ) *

M arkov chain. Next, for 1 €4 < 4, and

# (1, x) =

card {n:x, = 7}
number of oceurrences of the symbol 7 in the

< N-vector x. (42)
For .V =1, 2, -, define the set of “typical” X sequences as the set
\NA*” % M — N #Afxv * .
T*(N) TmR/._'Z!IEME Sév,1 20754,
where o
A Y
v = N4 (43b)

.bwﬁ.:m remark in ﬁmm.mm:m that the random N-vector X*¥ consisting of
Q HmMm%mWQma coples of X* satisfies E# (i, X*¥) = Np%(:), and
ar 7, X*M)] = Npx()[1 — p%®) ], for HVA = ,
Chebyshev’s inequality x®J srEd This by
4.

Pr{X* & T*(N)} £ ¥ Pr {|#(, X% — Npx()| > Noy}

i=1
OA%vlo 44
N (Mﬂ ) A v
as N > .

.»
M .M_ <m~m#?NJu\>§w<
We can now state the second of i
. S our lemmas. We h
armoo:c_cmﬂo:omnEmmmnSo:. give the proof at

NM:.::@ §: Let XN, Z~ correspond lo an arbitrary encoder and let X*, Z*
T* correspond to an arbitrary px as above. Then Y

1 e
§ I&YZY) = I(X*, Z%) + (log 4) Pr {X¥ & T*(N)} + f1(N),
where f1(N) — 0, as N - =,
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|
i
'

R

Lemma 8 implies that, if the encoder is such that with high proba-
bhility X¥ & T*, then (1/N)I(XV; ZY) cannot be much more than
[(X* Z%).

Lemmas 7 and 8 hold for any encoder-decoder. Our next step is to
describe a certain ad-hoc encoder-decoder and deduce several of its
properties. We then show that when the parameters of the ad-hoc
scheme are properly chosen, the direct half of Theorem 2 will follow
easily.

We begin the discussion of the ad-hoc scheme by reviewing some
tacts about source coding. With the source given as in Section 11,
for K =1, 2, -, there exists a (“source encoder’’) mapping Fe:
s8 — (1,2, -+, M}, where

M = Mkmmciwvu A%mv

ad 65 = K-% Let Fp: {1,2, , M} — 8% be a (‘“‘source decoder’”)
mapping, and let

Pr {FpoFg(SX) # S¥}

be the resulting error probability. It is very well known that there
exists (for each K) a pair (Fg, Fp) such that, as K — =,

P® = Pr {Fp(W) # S¥} =0,

P =

(46a)

where

W = Fg(S¥). (46b)

We will design our system to transmit W using an (FE, Fp) that

satisfies (46). .
We now turn to our ad-hoc system. (Refer to Fig. 4.) The source

output is the vector Sk, and the output of the source decoder is
IV = Fgp(SX). Let
(47)

g: & Pr{W = Fe(8%) =i}, 1

SOURCE
DECODER

CHANNE

SOURCE
ENCODER

ENCODER DECODER

SOURCE

2N

Fig. 4—Ad-hoc encoder-decoder.
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Next, let M, = M.M be a multiple of M to be specified later. Let

{(xm}i

be a subset of %V, Clearly, {Xx.} can be viewed as a channel code for
channel Q8 or channel Q. The channel encoder and decoder in
Fig. 4 work as follows. The channel encoder and decoder each contains
a partition of {x,.{{"* into M subcodes C, C,,
cardinality M, Assume that

¢, =

«++, Ca, each with

1<is M.

When the random variable W = ;, then the channel encoder output

XV is a (uniformly) randomly chosen member of the subcode C:. Thus,
forl =i 2 M 15 )< M,,

nNC!:,Fw:,. ty x::uf (48

MUN. "uﬁ/ = NTIC,«:‘:.

W =il =

7. (49

-
I

and

Pr{Xy = x:v:f:“ = &

M. (49h)

Now the set {x, 1" can be thought of as a channel code for channel
Q§’ with prior probability distribution on the code words given by
(49b). A decoder for the code is a mapping - YY — {x,. 1 and the
{word) error probability is

N = Pr{G(YY) = X¥], (30)

where YV is the output of Q§”, when the input XV has distribution
given by (49b). We assume that the channel decoder in Fig. 4 has
stored the mapping (. When the channel output is y € Y¥, the channei
decoder computes G (y). When G (y) € C,, the chanuel decoder output
is 7, 1 £7¢ < M. Letting W be the output of the channel decoder,
we have

Pr{WV = W} <

The final step in the system of Fig. 4 is the emission by the source
decoder of 8% = Fp(W), where Fp: {1,2, - --, M} — 8% is chosen so
that (46) holds. We have

Pr{s = §j

H

Pr{S =
Pr {8

Fp(W))
Fp(W);, W = W}.

Iv

Thus,

P, 2 Pr{S =8} <Pr{Ss=Fp(W)}

+Pr{W =W} < P®+x ()
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Next. let us observe that each of the subcodes C; can be o.OSmE.mam.Q
1 code WS channel Q%) with M, code words and uniform prior distri-
hution on the code words. Let \; be the resulting (word) error proba-

hility for code C; (1 < 7 < M) with an optimal decoder, and let
= M 97... awv

We now establish
Lenuma 9: For the ad-hoc encoder-decoder defined above
I(X~:ZY|SK) = log M, — [R(X) + X log M:].

Proof: Let SK be such that W = w.mﬂm.j = ¢. Then @ro MH/E_MM
input XV given W = 7 has distribution given by (49a), FM;U.: ,rmg
randomly chosen member of Ci. Since A is the mﬁoﬁgm a M\ _lv -
code €, used on channel Q% Fano’s inequality [use Qov.g% = E‘
I'= — the decoded version of Z¥ when code C; is used ] yields

@v = \;v:.v + N wom Em“

v, U
HXN|ZV, W =

and, since H(XN|W = 1) = log M, we have

I(XV;ZY|W = i) = log My — h(A:) — \ilog M.

Averaging over 7 using the weighting {q:}, and using the concavity

of h(+), we have

IXN.Z5|W) = log My — [h(X) + Xlog M.]. (53)
Finally, since S, W, X, Z is a Markov chain, (4) yields
I(X¥,Z¥|W) = H(Z|W) — H(Z|XW)
= H(Z|W,S) — H(Z|X)
= H(Z|W,S) — H(Z|X,S) ‘
MN:N_mVImAN_N,mVH:szN; S). (54)

Inequalities (53) and (54) imply Lemma 9. .
We are now ready to combine the above lemmas as:

Corollary 10: Let px be an arbitrary probabality %ﬁ&@:?oz *oz MHV nwm
let T%(N), X* Y* Z* be as defined above (corresponding to ?L.& m.m:ﬂS
that SE, XV, YN, Z¥ correspond to twm above ad-hoc encoder-decodes FMM :
parameters N, K, M, My, M, N, A Let P, and A correspond to this

ad-hoc scheme. Then

P, P¥ + (55a)
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K K 1 R(X)  Xlog M,
NAE NIt plog My - I(X% 2 — 250 - L0

— (log 4) Pr{X¥ & TX(N)} — f1(N), (55h)
where fi(N} - 0 as N — =,

Proof: Inequality (55a) is the same as (51). Inequality (55b) is ob-
tained by substituting the results of Lemmas 8 and 9 into (40) and
using H (SK) = KHg.

Finally, we are ready to prove the direct half of Theorem 2. We do
this by showing that any pair (R, d), which satisfies

R-d = HsT'(R), (56a)
0 =R =2 Cy, (56b)
0 =d = Hsg, (56¢)

is achievable. Thus, for (R, d) satisfying (56) and for arbitrary ¢ > 0,
we show that our ad-hoc scheme with appropriately chosen parameters
satisfies (9). To begin with, choose K, N to satisfy

K R

N oD
(Assume that R/Hy is rational.) Note that (57) implies (9a). Also, let

px be a distribution on & that belongs to ®(R) and achieves T'(R)—
that is,

I[(X*, Y% = R,
I V) = 1(X5 2% = [(X*; Y*|2%) = T(R),  (38)

where X*, Y* Z* correspond to p%. We now assume that an encoder-

decoder is constructed according to the above ad-hoc scheme with
the parameter*

My = exps Az TS;M y¥) — < : . (59)

2H

where X*, Y* correspond to the above choice of px. With this choice
of M\, and with M given by (45), we have

M, = kww_ = exps _kzw_HNAN*M Y*) — Mmm — Wmmmmx _ <k gv (60)

N wmm
"Note that, from (57),

" Assume that the right member of (39)

is an integer. If not, a trivial modification
of the sequel is necessary.
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K K eR
wyow Ew = NAN*‘ M\*v —_ zmm —_ zmmmw bt Nmm
(a) ek
= I(X*; Y*) — R — Réx — 5
(Rd/Hs) . _ <R
= 1YY = Sy T T o
) eR
£ I(X*; ) — T(R) — Rbx — 37~
- _ eR
N:N*WM\*VI:N*L\ ,Nvlmma OHs

() - lmw.
= I(X*;Z%) — Rbx — 55~

(61)

Step (a) follows from (57), step (b) from (56a) and aww.vmzm step (c¢)
isa N hain—see .

from the fact that X*, Y* Z*is a Markov ¢ .

Srmo us now apply Corollary 10 to the ad-hoc movmgo with ﬁ.:m mdmw,\m

choice of My, M., and with the above choice of p%. Inequality (55a)

remains N .

and substituting (60) into (565b) yields
(RA)/Hs 2z 1(X*; V) — [(X*;2%) — [2(N)

— T(R) — f2(N), (632)
where
R h(N) , Xlog M,
f2(N) = mmmm + Réx + N -+ N

+ (log 4) Pr {(X¥ & T*(N)} + f1(N). (63b)

4 M
Now observe f2(N) and X depend on the choice of the m@m Mxmwmmm
The following lemma asserts the existence of a {Tm} m.:o: .ﬁ,.E
quantities are small. Its proof is given at the end of Sz.m section.

Lemma 11: With px and M., M, as given above, there extists for arbitrary
N a set

”Niwwwuﬁw

such that )
Pr {(XV & T*(] y“ < fu V), (64)

A

where fa(N) — 0, as N — =,
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Now let the set {x,}¥' in the ad-hoc scheme be chosen to satisfy
(64). Then, from (62) and (64) [using the fact that PE — 0, as
K —» (46)], we can choose N (and K = NR/Hs) sufficiently large
so that

P, =

this is (9¢). It remains to establish (9b). But from (64) with N suffi-
ciently large, we can make

5 M_Om N—\u
Réx + N +]2‘

Then (63) and (56a) yield

R

+ (log 4) Pr{X¥ & T*(N)} + fi(V) < ST

mwwiﬁwlvlmﬂalm.

Az
which is (9b). .EE@IQF d) is achievable and the proof of the direct half

of Theorem 2, i.e., ® C ®, is complete. It remains to prove Lemmas
11 and 8.

Proof of Lemma 11: We begin with some notation. For x & av, let

L, x & T*(QN),

w(x) = 0, otherwise.

(65)
Also for a given set {x,}I, let X" (xy, - - -, Xur,) be the error proba-
bility ‘that results when {x,} is used as a channel code for channel
Q§” with prior probabilities (49b) when code word X, 1S transmitted
and when maximum liklihood decoding is used. Thus,

M M,

q:
A= o\ (m) X, NI 4 )
N.m Sn:m:?i M, (i )

Further, with X, defined as above as the error probability for code
C; on %\,\_vf write A\, = VV_\%AN?.ICE“+: sy N;?v = VES\AQ&VV so that
the dependence of A, on C. is explicit. We have

_ M

A= M g = 2 ghw (C).

Finally, define

®(xy, -, X)) 2 Pr{XN @ TH(N)] + A + X
M M, q:
= M M I\-N.» mtmvnsv lT VQ:A%T Tty Nanvu
2

i=1 m=({—1)M,+1

45 gauw(C). (66)

=1

Now suppose that the set {z,}#* is chosen at random, with each x.
chosen independently from ¥, with probability distribution PP (x)
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= TT%_, p%(z.). We establish the lemma by showing that E® = F3(N).
zOmww_wMNM svsr from (59), (1/V) log M1 is bounded below Z(X*,Y*).
Also from (61), (1/N) log M, is bound below I(X*;Z*). It follows
from the standard random channel-coding theorem (see, for example,
Ref. 1, Theorem 5.6.2) that EX®™), Exyw £ fo(N)—0, as N — .
Further, Eu = Pr {X* € Tx(N)} = fs(N) — 0, by (44). Thus, E®
< 2fu(N) + f5(N) £ f3(¥) — 0. Hence the lemma.

Proof of Lemma 8: Here too we begin with some notation. rmmp D Nm M
probability distribution on X, and let § (p) be the mutual informa wo

between the input and output of channel Quw when the :65. as
distribution p. It is known (Ref. 1, Theorem 4.4.2) %me g(p) is a
concave function of p. Let u(x) be as in (65), and write (for any

encoder-decoder)

L2y = 5 IXY, w(X);2Y)
— W. N NZ NZ + IH| Nht ANZV ; N?.H_
- N.(« NhN ) _tA vu_ N<<
L% PRy = IRV 2V = )
i=0
2 I[a(X); 2¥]. (67)
Now

L P {u(XV) = 1HI[XY; 28| u(XY) = 1]
! < (log 4) Pr {X¥ & T*(N)}, (68)

and

1 .
L fux);29) 5 L HILGEN] S 5 (©9)

One term remains in (67). Using the memoryless property of channel
&), (Ref. 1, Theorem 4.2.1), we have

MW

WA

H 2 M = .
LIV 2= 0) Sy 2 TXni Zaln=0)

1 & 1 X
.NI/\u:MH .mc.v:v =9 Aa M Nv:vu AﬂOm.v

n=1

where p. is the probability distribution for X. given g = 0, Le,
forl 275 A4,

pa(d) = X 8..:Pr{XV =x|XV & T*. (70b)

xcT»

The last inequality in (70a) follows from the concavity of 9. From
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(70b),
PO 2§ L) = T Pr X = xX € 1) LACE I
The definition of T* (43) and eq. (71) yields
1P = px(@)] £ v >0, as N —ew.
Since 9(p) is a continuous function of P, we have
19(P) — 9(pX)| S g(N) >0, as N —eo. (72)
Substituting (72) into (70a), we obtain
3P b = O IR 2V = 0) 5 90 + 9()
= L(X*;Z*) + g(N). (1)

Finally, setting f1(N) = (1/N) + ¢(V), and substituting (68), (69).
and (73) into (67) we have Lemma 8.
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APPENDIX A
The Data-Processing Theorem and Fano’s Inequality

Let U, V, U be discrete random variables that form a Markov
chain. Then the data-processing theorem can be stated as

H(U|V) < H(U|D), (T4a)

or equivalently i
Iu;v)yz 1(U; 0).

Inequality (74a) follows on writing

(74h)

(a) (b) -
HUY) = HU|V,0) £ HU|D),

where step (a) follows from (4), and (b) from the fact that conditioning
decreases entropy [Ref. 1, eq. (2.3.13)].
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Next, let U, V, U be a Markov chain as above, but now assume

that U, U take values in U(jU] < ). Let

A= Pr{U = U}. (75)

Fano’s inequality is

H(UIV) £ k) + og ([ — 1) S () + Mlog [u]. (76)

To verify (76), define the random variable

~ _ o, U=1T,
®(U, U) = 1, U= U,
and then write
H(U|V) SHWU|D) < HU, 8|0

= H(®|U)+ HUI|U, @)

< H@®) +HU|U, ) )

= H@®) + Pr{¢e =0JHU|U &= 0)
+Pr{e = 1HU|D,&=1)

(b)

= h(\) + (1 = N0+ \HU|T,2=1)
Loy + Mog (Ju] — 1) £ A0 + Nlog [l

which is (76). Step (a) is (74a), and step %Jva_oMoMm ?mwsls% WMM

1 =0 de y = = Y
that, given ® = 0, then U = U, so t e
mmﬁu AW from the fact that, given ® = 1, U takes one of the ||

values in U excluding U. . . . -
A variation of Fano’s inequality is the following. Let §%, v,

. A &fw ;T
be a Markov chain where the coordinates of S¥ and S¥ take the
values in the set 8. Let

Wtﬁ = Wﬂ Tm.x # .WL Aﬂﬂmv
and . -
1
w@ = Nlﬁ amw wmw.
We will show that Fano’s W:SFE:SN implies
AL
L 4(sK|V) = h(P) + P.log (|s|—1) 28(P). (78
K
To verify (78), write
L psx|vy 2 L $ HS V)
K = Ko
N (c)
ﬁm |H. M mANanv M mAmvavv
= Kin
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which is (78). Step (a) is a standard inequality, step (b) follows on
applying (76) to the Markov chain 8w, V, S, and step (¢) from the
concavity of §(-).

APPENDIX B
Proof of Lemma 1

() With no loss of generality, let o« = {1,2, o, A}, Any
probability distribution py can be thought of as an A-vector

P = (py, ps, -+, pa). Since I(X;Y) is a continuous function of Px,
the set ®(R) is a compact subset of Euclidean A-space. Since I (X; Y| 2)
is also a continuous function of px, we conclude that I(X; Y|Z) has
a maximum on ®(R). This is part (7).

(22) Let 0 < Ry, Ry < Cy, and 0 < ¢ = 1. We must show that

P[0k, + (1 — O)R.] = 6T'(R,) + (1 — O)I'(R,). (79)

For i =1, 2 let p; & ®(R.) achieve T(R). In other words, letting
Xy, Yy, Z: correspond to Pi, 2 = 1,2 then

IX,Y)z R, I(X,Y,|Z) = I'(R,). . (80)
Now let the random variable X be defined as in Fig. 5. Fori = 1, m«.gm
box labeled “p.”’ generates the random variable X that has probability
distribution “p.” The switch takes upper position (‘“position 1")
with probability 8 and the lower position (“position 2”) with proba-
bility 1 — 6. Let V denote the switch position. In the figure, V =

Assume that V, X,, X, are independent. As indicated in the figure,
X =X, when V =4, i=1, 2. Now

I(X;Y) = H(Y) — H(Y|X) = H(Y) = H(Y|X, V)
= H(Y|V) — H(Y|X, V) = I(X;Y|V)
=0I(X;Y|V=1+(1—-0IX;¥|V=2
=01(X1; V1) + (1 = 0)[(X:; Vy)

2oR + (1 — &R, (81)

L

P2

Qm Qu

Fig. 5—Defining the random variable X.
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Step (a) follows from the fact that V, X, .M\ is a Z.m%o.< orw:w Nﬁm
(4). Step (b) follows from (80). Inequality (81) Hgvrm‘mrﬁ m?oB
distribution defining X belongs to ®[6R, + (1 — 8 R.]. Thus,

the definition of T,

T[6R. + (1 — )R] = [(X; Y|2). (82)
Continuing (82) and paralleling (81), we have

—®R,] = H(Y|Z) — H(Y|XZ)
e ! uHmC\_Nvlmﬁ\_N«Na\v
> H(Y|ZV) — H(Y|XZV)
=1(X;Y|ZV) = 0I(X; Y|Z, V=1
+ Q-0I(X;Y|Z, V= 2)
01(Xy; Ya[Zy) + (1 — OHI(X:; Yo
T (Ry) + (1 — OOT(Ry),

Z>)

which is (79). This is part (7). o

(77) This part follows immediately from the definition of T'(R)
; . . . . Y

10), since ®(R) is a nonincreasing se . . . |
( AWS Since I'(R) is concave on [0, Cx ], and so:ESmmm.Em“ m B:Ma.
be continuous for 0 £ R < Cy. Thus, we bmom.o:_%. <o.:J .ﬁ e co
tinuity of I'(R) at R = Cu. Let p be a probability distribution o:AWn
viewed as a vector in Buclidean A-space, as in the v:‘vo«m Mvvw“ vm@o“
Let 9(p) and 4(p) be the values of I(X; Y) and :%, | m :omo:m
tively, which correspond to p. 9(p) and J(p) are continuous fu

M ; - . :
’ Moé let {R;}i" be a monotone increasing sequence such that
R — Cu, and R; = Cy. We must show that, asj — =,

7 My ;7 =

I'(R;) — T'(Ca). (83)
Now from the monotonicity of T(R), limj.., I'(R;) exists and

3
lim I'(R) = T(Ca)- | (84)

[t remains to verify the reverse of ineq. (84). Let {p;} ¢ satisfy

a(p) = R;, §(p) = T(R), (85)

for 1 £j < =. Since the set of probability A-vectors is Mo::umow
= ) . . . B
there exists a probability distribution p* on X such that for so
subsequence {P;,}r=1 .
lim p;, = P*.

k—»o0
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It follows from the continuity of g(-), and (85) that g(p*) > Cu, s0

that p* ®(Cur). Therefore, from the continuity of .mA.vv and (85)
we have ‘

_555ums:ﬁu:i?vum@mzqsae
Jj»x 00 k-0 '
:”rmwm step (a) follows from P*ER(Cyy). Inequalities (84) and (86)
yield (83) and part (1v).
(v) From (12),
I'R) = su I(X; V) - ;
nup LI(X;7) - I(X; 2)]
s sup I(X;V) < Cur,

Px EC(R)

which is the first inequality in part (v). Also, using (12),

L(Cw) = & I(X: V) — .y
<v Px W%MM‘,_: ﬁ A ’ v NAV\M Nvu

sup  [I(X;Y) — Caw] = Cy — Cup. (87)

Py EP(Car)

1%

Since I'(R) is nonincreasing, (87) yields I'(R) Z2T(Cuy) 2 Oy — Cirw,
completing the proof of part (v).

APPENDIX ¢

Source with Memory

In this appendix, we show how to modify our definitions and re-
sults for a source with memory. We will take the source output
sequence {S;} to be g stationary, ergodic sequence (where S, takes
.ﬁ:c@m in 8) with entropy (as defined in Ref. 1, Section 3.5) of Hg. As
n Section 1I, we continue to assume that 8] < o, and that the
source statistics are known.

The channels Q,, and Qw remain as in Section 11, as does the defini-
tion of an encoder-decoder with parameters N and K. The definition
of P, also remains unchanged, but a new definition for A is necessary.
To see this, let us suppose that the source was binary, ie., § = {0, 1},
with entropy Hg, and with H(S81) > Hs. Suppose also that the channel
Qx 1s a noiseless binary channel, and that Qw has zero capacity. A
possible encoder-decoder has X — N =1 and takes X, = S1. Such
a scheme has P, = 0, but with A as defined in (7) given by
A=H(S) > Hs. Using (9), this would lead us to accept the pair
[Hs, H(S))] as achievable, which would not be reasonable. Accord-
ingly, we give a new definition of A.

Let S¥ 7z~ correspond to an encoder with parameters K, N as
defined in Section IT. Let SE(5), Z¥()), 7 = 1,2, -+, », correspond to
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the v successive repetitions of the encoding process. Then define the
equivocation at the wire-tap as

A= lim w&mﬁm:c, S SKWY[ZV(Y), -, ZV )]
v (88)

lim — H(SX|ZV),

v— o v

With A as defined by (88), we define the sets ® and & as in Section II.
We claim that Theorem 2 remains valid.

The proof of the converse-half of Theorem 2 given in Section IV
goes over to the case where the source has memory with only trivial
changes. Further, the results in Section V are all valid exactly for the
source with memory. They yield that, if (R, d) satisfies (56), then we
can for ¢ > 0 arbitrary find an encoder-decoder with parameters N,
K, and P, which satisfies ‘

a% "2 R -« (89a)
P.< ¢ (39b)
WEijzv >d— (89¢)

Further, we can do this for arbitrarily large K. We show below that
there exists a function f(K), K = 1, 2, -+, such that for any code
with parameters K, N

>n:a%Ema_Néwwmaﬁsiayae
v Ky K

where limg .., f(K) = 0, and f(K) depends only on the source statistics.

Combining (90) with (89¢), we have

Azd-—e— f(K).

Since f(K) — 0, we conclude that (R, d) is achievable. This is the
direct half of Theorem 2. It remains to verify (90).

First, imagine that the encoder-decoder begins operation infinitely
far in the past. Let [S(j), Z(7)] be the (S¥, Z¥) corresponding to the
Jth encoding operation, —® < j < o. Thus, SX» = (S, -+, Sk,)
= ﬁmnuy ] mmvvu and ZX» = ﬁNAva T Nﬁvvu_. v= Hv 2, -+-. Let
*=[--+,Z(-1), Z(0), Z(+1), -++7]. Of course,

H(S¥*|ZY") z H(SX*|Z%). (91)
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Further, Substituting (95) and (94) into (93), we have
H(SK*|Z%) = H[S(1), -+, S¢( *
, , S| Z4] 1 . . 1 .
- H(S¥*|\Z¥) = —[H(S H(Z|S) — H(Z)] — f(K
o i, ¢ ) 2 g LH(S) + H(Z[S) @)] - J(K)
= L HIS(IZ* S(j+1), - -, 8(»)] 1
/ - L H(SIZ) — f(K),
b) »
= M,..H H[S(1)|Z*, 8(2), ---, S(j)] which is (90).
=
(e)
’ REFEREN
2 vH[S()|Z* S(2), -+, ()] z vH[S(1)|2* 8], (92) CES
L. R. Qm Gallager, Information Theory and Reliable Communication, New York:
where §' = ) 3. ... e . . John Wiley, 1968.
ol :,. i [S(2), m.avw . 1. Step (a) is a standard identity, step (b) 2. A.D. Wyner and J. Ziv, “A Theorem on the Entropy of Certain Binary Sequences
ollows from the stationarity of the sequence {S;} and the memoryless- wﬁ& >tv_.womvac:m ”qHumiw W: IEEE Transactions on Information Theory, I7T-19
§ , . Vov. 1973), pp. 769-772.
meﬁm .o.m ».rm channel Qrw, and mﬂmv (c) follows from the fact that 3. R, m.ﬂVzF N:\oﬂwm&&: Theory, New York: Interscience, 1965.
po:&;yo::ﬁ decreases entropy. Now, let 4 M E. Hellinan, “The Information Theoretic Approach to Cryptography,”’
Stanford University, Center for Systems _wmmcm:ﬁ‘ April _cw. N
= QK — _ R . 5. C. E. Shannon, “Communication Theory of Secrecy Systems,”’ B.S.T.J., 28, No. 4
S S =8(1), 8 =[S12),8@), -], (October 1949), pp. 656~715.
Z=27ZV=2Z(1), 7' = L Z(—1), Z(0), Z(+2), -]

Thus, (91) and (92) become

1 . 1
K S22 2 H(S|Z, 2, ) : ;

1

=

[H(SZ|Z'S) — H(Z [2'S")]

H ! ’ 7
7 UH(SIZ'S) + H(Z|SZ'S) - H(Z|Z'S)]

()

1
Nm.ﬁﬁmﬁm\v + H(Z|S) — H(Z2|2'S")]

(1%

1
g LH(SIS) + H(Zis) — H(Z)]. (93)

Step (a) follows from the fact that Z', 8,8 and (S,2), S, Z are
Markov chains, and (4). Now

1 , 1 & ,
MmAmiwv"ManumA@Lm‘@w.‘.r...M»WNV
1 K
=% aupmm = Hg. (94)
Also,
1
_hwmmavlmm < f(K)—>0, as K —w. (95)
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