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Communication Systems with 
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Abstract -The coding theorem is proved for the secret sharing commu- 
nication system (SSCS) with two noisy channels, each of which is a 
broadcast channel characterized by P( y,z, Ix,), j = 1,2; it is assumed that 
the legitimate channel ( Xj + Y,) is less noisy than the wiretapped channel 
( Xj --f Z,), The code (f, +) for the SSCS is defined by two mappings: 
(Xp,Xp)=f(SK,T) and s^=q5(Yp,YaNz) where 7’ is an arbitrarily 
chosen random number and S is an independent identically distributed 
source output that must be transmitted to the legitimate receiver with an 
arbitrarily small error. The rate of each channel is given by N,/K while 
the security level for each wiretapper can be evaluated by 
(l/K)H(.SKIZ,~). The admissible region of rates and security levels is 
given by a “single-letter characterization.” 
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Fig. 1. SSCS with two noisy channels. 

I. INTRODUCTION 

T 0 ATTAIN safe information transmission via several 
parallel channels, the secret sharing communication 

system (SSCS) [l] has been studied as an extension of both 
Shannon’s cipher system [2] and the secret sharing system 
[3]. The coding theorem was proved for the SSCS with two 
or three channels in [l], but the channels were assumed to 
be noiseless. 

Fig. 2. Broadcast channel. 

In this paper the SSCS with two noisy channels (shown 
in Fig. 1) is considered. The specifications of the system 
are as follows. The source S is a finite memoryless source. 
The information S must be transmitted to the legitimate 
receiver without errors via two noisy channels (BCCl and 
BCC2). Because unauthorized persons may eavesdrop on 
the information S via the noisy channel, the information 
S must be kept as secret from them as possible. Each noisy 
channel can be regarded as a discrete memoryless broad- 
cast channel (BCC) P(yjzj]xj), j =1,2 (shown in Fig. 2), 
which consists of a mam channel ( Xj + 5) and a wire- 
tapped channel (Xi + Zj). We assume for simplicity that 
each main channel is less noisy than each wiretapped 
channel, respectively. The relation “Channel ( Xj + Yj) is 
less noisy than channel ( Xj + Zj)” means that for every 
random variable forming a Markov chain y. + Xj + YjZj, 

the following inequality holds: 

I(?; 5) >I&;.; z,) 

(see [4] for details on the notion of “less noisy”). 
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To realize a secure transmission in this system, we use a 
block code. Since the two channels do not have the same 
characteristics in general, a different codeword length is 
used for each BCC (say Ni and N2 for BCCl and BCC2, 
respectively) per K source output symbols. The encoder J 
can utilize an arbitrary random number T besides the 
source output SK to randomize the codewords XF = 
(X11, x1*,* * -7 XtN,) and X7 = ( X2i, Xz2,. . . , X,,). Since 
T can be chosen arbitrarily, the encoder f can be restricted 
to deterministic functions without loss of generality. Hence 
XT and Xp can be assumed to be uniquely determined 
from both SK and T by the encoder f. The decoder 
reproduces s^” from both I’;” and Y;“2. The security 
level of this system is measured by ((l/K)H(SK]ZF), 
(wwvKIZ29). 

In this paper the coding theorem for the foregoing 
system is proved, and the admissible region of rates and 
security levels is completely obtained. The precise state- 
ment of the problem and the main results are given in 
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Section II. The  theorem is proved in Section III. A binary 
example is given in Section IV. 

The  SSCS with two noisy channels was discussed earlier 
as a  generalization of the SSCS with two noiseless chan- 
nels. However (see F ig. l), if only one  channel  is consid- 
ered, the system reduces to the wiretap channel  system, 
studied by Wyner  [5] and  extended by CsiszLr and  Kiirner 
[4]. Hence the SSCS with two noisy channels can be  
regarded as an  extension of the concept of the wiretap 
channel. The  relation of our results’ to previously known 
ones [l], [4], [5] is examined in Section II. 

II. FORMAL~TATEMENTOFTHE~ROBLEMAND 
MAIN RESULTS 

Let the source output { S, }r=i be  a  sequence of inde- 
pendent  identically distributed (i.i.d.) random variables 
(Rv’s), S taking values in a  finite discrete set 9’. Each 
channel  in F ig. 1  is a  broadcast channel  (shown in F ig. 2) 
characterized by P(yjzjlxj), xi E Xi., yj E gj;., zj E Tj (j 
= 1,2) where T j, gj, T j are finite discrete sets. The  BCC 
has the property that the ma in channel  ( Xj -+ 5) is less 
noisy than the wiretapped channel  ( Xj + Z,). The  code 
(f,+) is defined by two mapp ings: 

f: ~~X~-c2-~Xz-p (2) 
r#l: Y”lxYzN-YK (3) 

(x;N1,xp) =f(S”,T) (4) 

s”K= ‘p( Y;y, Y;“z) (5) 

where T is a  random number  and  takes values in a  discrete 
finite set .9-. T and .7 can be  chosen arbitrarily. 

The  rate of each channel  is given by N,./K. The decod- 
ing error of the legitimate receiver can be  evaluated by 
E(l/K)D,(SK,gK) where D, is the Hamming distance 
function while the security level of SK for each eavesdrop- 
per can be  evaluated by (l/K)H(SKIZj?). 

Definition 1:’ (R,, R,, h,, h2) is admissible for the SSCS 
shown in F ig. 1  if a  code (f, +) and  a  random number  T 
exist such that for any given 6  > 0  and  K sufficiently large, 

N. 
‘<Rj+fr 
K- (6) 

;f?(SK,Zj~) 2 hj - c, (0 2 hj < H(S)) (7) 

E;DH(SK,$(Yp,Y;\iZ)) 16. (8) 

Definition 2: The  admissible region 9?)sscs is defined by 
.%? sscs p  {(R,, R,, h,, h,): (R,, R,, h,, h2) is admissible}. 

(9) 
Our ma in results are as follows: 

Theorem I: Assume that the ma in channel  is less noisy 
than the wiretapped channel  in each BCC. Then,  

(Rl,RZ,hl,hz)E~)SSCS,O~hl,h2jH(S) (10) 

if and  only if (iff) there exist constants rj and RV’s 
Xj,q,Zj (j=1,2) such that 

o+z(x,;y,) 
J 

q s I( xj; rj) - I( xj; z,) 

J 
(14 

r-1 + r* 2  H(S), (i, j) = (1,2),(2,1). (13) 

Proof: See Section III. 

Corollary 1: Under the same condition as in Theorem 1, 

(4, R,, h,, h,) E -@s,,,> 0  2  h,, h, 2  H(S) 
if and  only if there exist RV’s Xj, 5, Z j (j = 1,2) such that 

h,s [I(X,;Y,)-Z(X,;Z,)]R,+Z(X,;Y,)R, 04) 

h,s [I(X,;Y,)-I(X,;Z,)]R,+I(X,;Y,)R, (15) 

H(S) II(X,;Y,)R,+I(X,;Y,)R,. (16) 

Proof: Equations (ll)-(13) can be  rewritten as fol- 
lows: 

his [‘(Xi;?)-I(Xj;Zj)]Rj+ri (17) 

O<r,<I(X,;~)R, (18) 

H(S) Irl+r2. (19) 
Hence if (R,, R,, h,, h,) satisfies (ll)-(13) it also satisfies 
(14)-(16). On  the other hand, if (R,, R,, h,, h2) satisfies 
(14)-(16) it also satisfies (ll)-(13) with rj = I( Xj; Y,)R,. 

The secrecy capacity or secrecy capacity region can be  
defined when the information can be  sent to the legitimate 
receiver in perfect secrecy (cf. [4], [5]). In the SSCS with 
two BCC’s, the information SK can be  kept secret from 
each eavesdropper perfectly if h, = h, = H(S). Hence we 
define the secrecy capacity region 9’s”,,, as follows: 

92,s g  { (4, R,): (4, R,> H(S), H(S)) E us,,,}. 
(20) 

W e  can then easily obtain the following corollary. 
Corollqy 2: Under the same condition as in Theorem 1, 

(RI, Rd E -@‘,“,a if and  only if there exist RV’s Xj, Y,, ZJ 
(j = 1,2) such that 

H(S)< [I(X,;Y,)-Z(X,;Z,)]R,+I(X,;Y,)R, (21) 

H(S)< [Z(X,;Y,)-I(X,;Z,)]R,+Z(X,;Y,)R,. (22) 

W e  now investigate the special cases of F ig. 1. In the 
case that the eavesdropper can obtain the same informa- 
tion as the legitimate receiver, the admissible region re- 
duces to 

h, 5  I(&; YdR, (23) 
h,<I(X,;Y,)R, (24 

H(S) 5 1(X,; Y,)R,+ I(&; Y,)R, (25) 
by substituting Z j = 5  (j =1,2) in (14)-(16). In the case 
in which the two channels are noiseless, we can obtain the 
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admissible region by letting Xj = 5 = Zj (j = 1,2) as fol- 
lows: 

h, 5 1s V-II& (26) 
h, s 1% l-%lRz (27) 

H(S) <log1~~IP,+logl~~lR,. (28) 

The region (26)-(28) coincides with the admissible region 
of the SSCS with two noiseless channels [l]. Furthermore, 
we note from (23)-(25) that the admissible region in the 
case Yj = Zj can be achieved by concatenating the usual 
error correcting code and the code for the SSCS with two 
noiseless channels. 

In the case that only one channel is available, say BCCl, 
we get the admissible region by substituting R, = 0 and 
h, = H(S) in (14)-(16) as follows: 

hl %Q 
R,’ R, 

- I I( x1; Y,) 

b+i(xl;Yl)-I(xl;Zl). (30) 
1 

This region coincides with the result derived by 
Csiszar-Kiirner [4, car. 4]‘, which is a generalized version 
of the wiretap channel coding theorem [5]. 

III. PROOF OF THEOREM 1 

A. Proof of the Converse Part of Theorem 1’ 

If (A,, R,, h, 4 E ~sscs, then the code (f, 4) and a 
random number T-exist that satisfy (6)-(8). Let Xj, 5, Zj 
(j=l,2) be the RV ‘s characterized by the code (f, +). 
Since Xi, X2 are uniquely determined from (S, T) by the 
encoder f, a Markov chain relationship Yi -+ Xi + ST -+ 
X2 -+ Y2 holds. Hence we have 

I( ST; Y,) = Z( ST; Y,lY,) + I( Y1; Y,) 
2 Z( ST; YJY,) 
= Z( ST; Y,Y,) - I( ST; Y,) (31) 

where the first equality follows from ]4, lemma l] or [6, 
(2.3.18)]. From (8) and Fano’s inequality we obtain 

H(SIY,Y,) IPr(S#~(Y,,Y2)}log(lYKI-l) 
+h(Pr{S~~~YIJ’d}) 

5 KElog]Y]+ h(c) b Kc, (32) 

where co--f 0 as f -+ 0. Combining (31) and (32), the 
following inequality holds: 

Z( ST; Y,) + Z( ST; Y,) 

2 I( ST; Y,Y,) 

= II(Sf) - H(STIY,Y,) 

= H(S)+ H(TIS)- H(TISY,Y,)- H(SIY,Y,) 

2 H(S) + I( T; Y,Y,,S) - Kc,. (33) 

‘In [4], the rate is defined as R, = K/N, as opposed to R, = N,/K in 
this paper. 

*In this section superscripts on vectors are omitted for simplicity. 
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We now define rj ( j = 1,2) by 
Krj 2 I(ST; 5). (34) 

Then from (33) we get 

rI+r2k~[H(S)+Z(T;Y,Y,lS)-Kt,] 

OH;-+ (39 
Furthermore, the following inequality can be obtained 
from (33): 

Kr, = Z( ST; Y,) 

2 H(S) + Z( T; Y,Y,lS) - Kc, - Z( ST; Y,) 

=H(S,Z2)+z(S;Z2)-Z(S;Y,) 

- I( T; Y,IS) -i- I( T; tiiY#) - Kc, 

rH(S,Z,)+Z(S;Z,)-Z(S;Y,)- Kc, 

= fz(s,z;)+ 5 [z(s; z2,1Y:-1~;+1) 
t=l 

- Z(S; Y,JY;-'i:+')] -Kc,, (36) 
where 

q-l= (f&Y y22,- * -9 r,,-I), 

g;+l= (Z2r+l,Z2r+2,“‘,z2N2), 

and the last equality follows from [4, lemma 71. 
To simplify (36), we follow the technique shown in [4]. 

Let us introduce an RV J independent of S, T, Y,, and Z, 
and distributed over {1,2; . a, N2}. 

Set 
u 

2 
& yJ-lzJ+l~ 2 2 7 v, A u,s 

x2 ’ x2J, y2 ’ y2J, z, 9 z,,. (37) 
Then (36) becomes 

Kr,2H(SlZ2)+N2[Z(V2;i21U2)-Z(V2;Y#.$)]-Kc,. 
(38) 

Since U, -+ V, + X2 -+ Y,Z, is a Markov chain, applying 
[4, lemma l] we get 

Kr,2H(SlZ2)+N2[Z(V2;Z2)-Z(&; G) 

- Z(&/,; Y,) + I(&; r,)] - Q, 
=ff(SlZ,)+N,[I(X,;Z,) 

- I( x2; -qt;j - w2; z,> 

- I( x2; Y,) + I( X2; J’,K/,) + Z(U,; r,)] - Kc,,. 
(39) 

Since the main channel ( Xj + rj) is less noisy than the 
wiretapped channel ( Xj -+ Zj), 

w2; y,> 2 m2; z,) (40) 

w,; w-2) 2 1(x2; i,lv,). (41) 

Hence 

Kr, 2 H(SIZ,) + N2 [ Z( X2; z,) - I( X2; q)] - KQ. (42) 
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On the other hand, Kr, is upper  bounded as follows: 
0  < Kr, i I(ST; Y,) 

I lz( x1; Y,) 

t=l 

=&It&; Y,IJ) 
I 3NlI( Xl; Y,) (43) 

where inequalities 1-3 hold for the following reasons: 

1) ST -+ Xi -+ Y, is a  Markov chain. 
2) the BCC is memoryless; 
3) J -+ Xi -+ Y, is a  Markov chain. 

Since S, Zj, N,, K satisfy (6) and  (7), the following in- 
equalities are established from (42) and  (43), respectively: 

h,-r,<kH(SIZ,)+r-r, 

~~[z(x2;Y2)-z(x2;z2)]+(r+c,) 

s (R, + 41(X2; y,>- 1(x2; Z,)] 

+ (6 + 4 (44) 

I (R,+e)I(X,; Y,). (45) 
Similarly, we can prove 

hl-r2~(Rl+~)[Z(Xl;~)-Z(Xl;Zl)]+(~+~O) (46) 
OIr,s (R2+c)Z(X2;Y2). (47) 

Since (35) and  (44)-(47) can be  obtained for any E > 0, 
(ll)-(13) hold. 

B. Lemma on Broadcast Channels 

Before going to the details of the proof of the direct part 
of Theorem 1, we shall establish a  lemma concerning 
broadcast channels. Let us consider a  system with a  memo-  
ryless BCC P(yzlX) in F ig. 3, x E % , Y E Y, z E 3. The  
encoder  and  decoder  are defined by 

g:I&x I&-.%-* (48) 
lJ:Yn’ I&,&X IM 2 (4% 

where Z,,,, , A {0,1,2; * *, M j - l}. Let W ,, W , be messages 

Receiver 2  

Fig, 3. Broadcast  communicat ion system. 

from the sender to the receiver 1. W , must be  kept secret 
from the receiver 2, who is an  eavesdropper,  while W , may 
not be  kept secret. W , and W , are independent of each 
other and  taking values over ZM1  and Z iM,, respectively. 

If for any given E > 0  and  sufficiently large n there exists 
a  code (g, #) such that 

llogM-jk RJ* -e, j=1,2 (50) n 

;H(W,,Z”) 2RT-c (51) 

p;,&t Y”) # 0% w,wl~ w2) 5 E, (54 
(R:, Rz) is said to be  admissible for the system shown in 
F ig. 3. Then  the following lemma holds. 

Lemma I: Let P(x) be an  arbitrary probability distri- 
bution over X. If 

RP<Z(X;Y)-I(X;Z) (53) 
R; I I( X; Z), (54) 

then (RP, R; ) is admissible for the system shown in 
F ig. 3. 

Lemma 1  is proved in the Appendix. This lemma means 
that W , and W , can be  transmitted to the receiver 1  at rate 
I( X, Y) - I( X, Z) and  I( X, Z), respectively, with an  arbi- 
trarily small error. Furthermore, W , can be  kept entirely 
secret from the receiver 2. 

C. Proof of the Direct Part of Theorem 1 

Let h,, h,, R,, and R, satisfy (ll)-(13) for some RV’s 
Xj, 5, Z j and  constants rj (j = 1,2). Then  we must show 
that a  code (f, +) exists that satisfies (6)-(8). Let rj be the 
constant that satisfies the right inequality in (11) with 
equality. Since r/ 2 rj, the following inequalities hold: 

hj - r, 
7  5 I( Xj; k;.) - I( xj; zj) 

J 

(55) 

r{ + i-i2 H(S). (56) 
Furthermore, let h( be the constant that satisfies (55) with 
equality. Then  we have 

h( 2 hj. (57) 

Letting 

(58) 
rj’ and hj satisfy 

o~KP;-r,'l 
N i = z( xj; 5) - z( xj; z,) (59) 

Kr.’ 
-$- = I( xj; r,). 

J 

(60) 

W e  now construct a  code by applying a  typical sequence 
technique for the RV’s Xj, 5, Z j satisfying (59) and  (60). 
Let 7s be  the set of typical sequences of S. Then  it is 
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well-known that Lemma 1, a2 and (a,, a,$T) can be transmitted to the 

Pr{SKEYs} 21--c,, cK-+O(K+co) (61) 
legitimate receiver with an arbitrarily small error, and a2 
can be kept entirely secret from the eavesdropper 1. 

2-.VWS)+c,l I pr { SK= sK,sK E q } < 2-K[WW+I Similarly, since (T, ad, a,) is coded with codeword length 
(64 N2, the rates of a4 and (T, aS) are given by 

2K[H(S)-c~l < ,ys, I ~K[H(S)+QCI. (63) 

Therefore, if K [ H(S) + cK] bits can be transmitted to 
the legitimate receiver with an arbitrarily small error for 
sufficiently large K, (8) is satisfied. Let K [ H( S) + cK] bits 
divide into a, - a5 as shown in Fig. 4. If hi > H(S)+ cK, 
then h$ -[H(S)+ cK] dummy bits are added. (See Fig. 5.) 
Each a, has the following bits: 

a,: K[H(S)+ cK - hi] bits 

a2: K[h; - ri] bits 

a3: K[r; + r; - H(S)- cK] bits 

ad: K[h; - r{] bits 

a,: K[H(S)+ cK - hi] bits. 

(For simplicity, we consider these bits as integers because 
they can be approximated by integers with any desired 
accuracy for sufficiently large K.) 

Fig. 4. Partition of K [ H( S) + cK] bits. 

Dummy a2 
bits a3 a4 a5 

KCH(S)+ E nl 

w 

Kh’l 
Kh’a 

Kr’2 
Kr’l 

Fig. 5. Modified partition in case of hi > K[H(S)+ cK], 

Let T be a uniform random number having K [r[ + r-2’ 
- H(S) - cK] bits and independent of S. These a, and T 
are divided into (a,, a=, a,$T) and (T, ad, aS) to be trans- 
mitted via BCCl and BCC2, respectively, where $ repre- 
sents bitwise modulo-two sum. 

Since (a,, a=, a,@T) is coded with codeword length N,, 
the rates of a2 and (a,, a,$T) are given by 

E(h;-r;)=Z(X,;Y,)-Z(X,;Z,) (64) 
1 

E(h;-r{)=Z(X,;Y,)-Z(X,;Z,) (66) 
2 

E(r;(h;-r;)) =Z(T2;Z2), 
respectively. Hence a4 and (T, as) can be transmitted to 
the legitimate receiver with an arbitrarily small error, and 
a4 can be kept entirely secret from the eavesdropper 2. 

Since the legitimate receiver can obtain a,, a2, a,@ 
T, T, ad, as, it can then reproduce S E Ys with an arbi- 
trarily small error. This means that (8) holds. 

Eavesdropper 1 may obtain al and a,@T. However, 
since T is an independent uniform random number, the 
eavesdropper can know only a, having K [ H( S) + cK - hi] 
bits. Therefore, from the equiprobability of the typical 
sequences (see (62)) the following inequality holds: 

;H(S,Z;V’) ${Kff(s)-K(ff(s)+c,h;))-r; 

= h; -c; 

>h,-cf; (68) 

where fk, <;; -+ 0 (K -+ cc). Similarly, for eavesdropper 2 
we have 

From (58), (68), and (69) we can obtain (6) and (7). Hence, 
(Rl, R,,hl, h2) E ~sscs. 

IV. AN EXAMPLE OF THE SSCS WITH BINARY 
BROADCAST CHANNELS 

Let us consider a binary example. Let each BCC be 
constructed by three binary symmetric channels (BSC’s) as 
shown in Fig. 6, where the bit error probability Pjt (t = 
1,2,3 and j = 1,2) is restricted to 

0 I Pit IO.5 Pj2 I Pj3 (70) 

because the main channel is assumed to be less noisy than 
the wiretapped channel. 

Xi Y.i 
0 0 
1 1 

~(r;-(hi-r~))=Z(X,:Z,), (65) b 
Zj 

BSC Pj3 0 
1 

respectively (because of (59) and (60)). Therefore, from Fig. 6. Broadcast channel consisting of three BSC’s. 
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Let Pr{ X= 0} = qj (j =1,2); then we have 

I(xj;~)=h(qj*Pjl*Pj,)-h(Pj,*P,,) (71) 

I( xi; 5) - I( xj; z,) 

=[h(qj*pjl*pj2)-h(qj*pjl*Pj3)] 

-[h(Pjl*pj2)-h(pjI*pj3)] (72) 

where a*b=a(l-b)+(l-a)b and  h(x)=-xlogx- 
(1 - x)log(l - x). To  maximize the region given by 
(14)-(16), we have to obtain the opt imum qj such that 
both (71) and  (72) are maximized. Equation (71) is clearly 
maximized at qj = 0.5. Equation (72) is also maximized at 
qj = 0.5 because 

h(qj*pj~*pj~)~h(qj*pjI*Pj~) (73) 

holds for any qjT Pjl, Pj2, Pj3 from (70). Hence .%“,so for 
this example is grven by 

-,%scs = wh Rx, 4, h,): 
h, 2 b,R, + a,R, 

h, 2  b,R, + a,R, 

where 
H(S) 2 a,R, + a,R,} (74) 

aj=l- h(Pjl* Pj2) (75) 

bj=h(Pj,* Pj3)-h(Pjl* Pj2). (76) 

From Corollary 2  we can also obtain the secrecy capac- 
ity region W&,,, for this example as follows: 

%scs = W L  R2): 
H(S) 2 b,R, + a,R, 

H(S) > b,R, + a,R,}. (77) 

Note that the degraded BCC of F ig. 7  has equivalent 
characteristics to the BCC of F ig. 6  with 

Pi4 = Pjl * Pj2 (78) 
PiI * Pj3 - Pjl * Pj2 

q5= 1-2(Pj1*Pj2) . (79) 

Therefore, we can obtain Bsscs and  .%‘&, of the degraded 
BCC of F ig. 7  from (74) and  (77), respectively, by letting 

aj=l- h(P,,) 

bj=h(Pj4*Pj5)-h(Pj4). 

(80) 

(81) 

IN(clz”)-nP,(c)I~2r,l~l~r~ (‘A81 
for all c E 9”. Hence zn E 9”‘,x means zn E rz. Furthermore it 
is well-known that 

P;(z”EYz) 21-Cr,, c,+O(n+oo) (A9) 

+z(r”,Z”E.q IH(Z)+r,,. (AlO) 

Proof of Lemma A: Lemma A can be obtained by letting 
U = constant in [4, lemma 21. 

Xi Yj 
0  
1 BSC Pj4 I 0  

I I 1  

Fig. 7. Broadcast channel equivalent to Fig. 6. 

Proof of Lemma I: We  can prove Lemma 1 in a way similar 
to the proof of [4, lemma 31. Suppose that (53) and (54) hold. Let 
&fj = TnR:, j =1,2; then from (A4) and (A$ we can obtain sets 
Z  MY/ p {O,L.. ., MC - 1) for (I,,, ZMJ defined in Section III-B 
and (Z,+,, , Z,,+ ) defined in Lemma A such that M,, Mq , MK , MJ 
satisfy the following conditions with arbitrary accuracy for suffi- 
ciently large n: 

M,xM,,=M, (All) 

M2xMv2=MJ.  (Al21 

V. CONCLUSION 

The coding theorem of the SSCS with two noisy chan- 
nels is proved. Furthermore, it is shown that the results of 
[l], [4], and  [5] can be  derived from the ma in theorem of 
this paper.  

The  BCC’s in this paper  are restricted to be  “less noisy” 
for simplicity. W e  could consider the similar coding prob- 
lems for the SSCS with two “not less noisy” BCC’s or 
three or more noisy channels; however, these are still open 
problems. 

APPENDIX 
PROOF OF LEMMA 1 

Lemma 1 can be  proved by using the following lemma. 
Lemma A: If Z( X, Y) 2 Z( X, Z), then for every n there exists 

a set {+} ~9~ where j’ZMJ p {O,l;~~,M,_,} and kE 
Z k {O,l;. .) M&i } with the following property. There exist 
pzrwise disjoint subsets gjik c .?rlx(+) and subsets gjk c 

yz,,(xTk), of which those with the same index k are pairwise 
disjoint such that 

PiIX(gjjklXJ'k) 21-‘n  (AlI 

PQ(a7Jkl-qk) >l- c, (A21 
and as n-co, 

cn + 0  (A3) 
(l/n) log MJ + Z( x; Z) (A4 
(l/?r) log MK -+ z( X; Y) - z( X; z) (A5) 

In the foregoing lemma, rx is the set of X-typical sequences 
such that 

IN(4x”)-n~x(a)lI~n, for all a  E 3 (A61 
where N( alx”) is the number of occurrences of a  in x”, and { r, } 
is a  fixed sequence of positive numbers such that rnn-o.5 + 00, 
m n  -l -+o. F-qx is the set of all zn E % “, Z]X-generated by 
X-typical sequences x” E 9-l such that 

IN( aclx”z”) - N( alx”)PZjx( cla)l I: rn (A? 

for all a  E 3, c E 3. FylX is also defined similarly. If z’* E yzlx, 
we have from (A6) and (A7) 
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Therefore, by using the code ( x;~ } and the decoding region gjk 
in Lemma A, we can transmit W, E I,,,,, and w, E I,,.,* with 
sufficiently small error. This means that (52) holds. 

To complete the proof, it remains to show (51). Let Vi E ZMv 
and V, EZ",,* be uniform random numbers independent of I# 
and W,. Let X” be the channel input RV taking values in the 
codeword ( ~j’~ } . Then 

H(W,lZ) =H(W,Z)-H(Z) 

2 H( W,Zlv,) - H(Z) 
= H( W,XZlV,) - H( XlW,Zv,) - H(Z) 

= H( W,Xlv,) + H(ZlW,Xv,) 

- H(XIWIZV1)- H(Z) 

=H(XI~)+H(ZIX)-H(XIWIZV1)-H(Z) 

{ qk }. Therefore, we obtain from Fano’s lemma, 

(l/n) ff(‘YKzv,) 5 c,r. 
To obtain a bound of H(Z), define RV U by 

(Al71 

UI 
i 

1, ifzEyZ 
0, ifz6ErZ’ (Al8) 

Then 
H(Z) = H(ZU) I H(U)+ H(ZJU=l) 

+H(ZIU=O)Pr{U=O}. (A19) 

From (A9) and (AlO), we have 

tH(Z) -<h(c,)+H(Z)+c,,+I~k,. (A201 

Substituting (A14), (A16), (A17), (A20) into (A13), we obtain 
t w  

where the last equality follows from the fact that W, is.uniquely 
determined by X and (W,, V,) + X + Z forms a Markov chain. 

Since W,, W,, VI, V, are mutually independent, we have 

;H(XIV,) =;logM,+;logM, 

>RT+Z(X;Z)-c,. (A14) [II 

Furthermore, since the BCC is memoryless, H(Z IX) can be 
represented by 121 

H(ZIX) =- c Pr{X=x} 1 N(alx) 131 
XE C$i) as%- 

.~~~yyJ;,X(cIa)logPZIX(cla). (AI51 ~1 

Since x is a typical sequence, (A6) holds. Hence we have PI 
(l/n)H(ZlX) kH(ZIX)-e,,. (A161 [6] 

If WI E ZM, and V, E ZM,,l are given, k E  ZM, is also given. [71 
Then we can decode X from Z by using the decoding region 

~H(wJZ)~R:+Z(X;Z)+H(~I~)-H(z)-t:, 

=R: -E:,, f:,--,Oasn-,oo. (A2.1) 
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