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Ahsfruct-The source coding problem is considered for secret sharing 
communicat ion systems (SSCs’s) with two or three channels. The SSCS, 
where the information X is shared and communicated through two or more 
channels, is an extension of Shannon’s cipher communicat ion system and 
the secret sharing system. The security level is measured with equivocation; 
that is, (l/N)H(XI&), (l/N)H(XIKq), etc., where & and W J  are the 
wire-tapped codewords. The achievable rate region for the given security 
level is established for the SSCS’s with two or three channels. 

I. INTRODUCTION 

T  HE CIPHER communication system shown in Fig. 1  
has been studied by various authors. Suppose that the 

source is finite discrete memoryless and its entropy is 
H(X). Then, it is well-known that perfect security can be 
achieved if and only if the key rate is equal to the source 
entropy H(X) [l], [2]. The term “perfect” means that no 
information about X can be obtained from the codeword 
W ,, without the key W ,, even if an infinite amount of time 
is used for the cryptanalysis, that is, (l/N)H(XIW,) = 
H(X) where N is the block length of X. 

In the cipher system, it is generally assumed that the key 
W , is transferred to the destination through a special 
channel that can be perfectly protected against wire- 
tappers. However, such special channels cannot be realized, 
especially if a  high key rate is required. Hence we assume 
here that the two channels of Fig. 1  cannot be protected 
from wiretappers. Then the system becomes the secret 
sharing communication system (SSCS) with two channels, 
as shown in Fig. 2, where the two channels are on an 
equality and the source output X is mapped to two code- 
words W I and W ,. The decoder reproduces X from both 
W I and W ,. The security level of this system may be 
measured with ((l/N)H( X] W ,), (l/N) H(X] W ,)). 

For this SSCS, we can devise several encoding methods. 
For instance, W , and W , are used as the codeword W , and 
the key W ,, respectively, vice versa, or W I and W , are used 
as the time-sharing of W , and W ,, etc. Then, how is secret 
and efficient coding possible for this SSCS? In this paper, 
we shall obtain the rate region g*(hi, h2) necessary to 
attain the given security level (hi, h2) = ((l/N)H(XIW,), 
(1/WWJw2)). 
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Fig. 1. Cipher communicat ion system. 
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Fig. 2. SSCS with two channels 

As an extension of Fig. 2, let us consider next the SSCS 
with three channels depicted in Fig. 3, where the source 
output X is mapped to three codewords W ,, W ,, and W ,. 
Let us assume that the information X should be repro- 
duced from (WI, W ,, W ,), but no information should be 
obtained from just one codeword y(i = 1,2,3). For 
this SSCS, the security level may be measured with 
((l/N )H(X IWIW,), (l/N )ff(X IW,W,)~ 
(l/N)H( X] W ,W,)). In this paper, we shall also obtain the 
rate region g3( h,, h,, h3) necessary to attain the given 
security level (h,, h,, h3) = ((l/N)H(XIW,W,), 
(l/N)H(XIW,W,), (l/N)H(XlW,W,)) for the SSCS with 
three channels. 

wI 
Channel 1 I 

1 ii 
DECODER $ 

w3 TF 
Channel 3 

Fig. 3. SSCS with three channels. 

It is worth noticing that the SSCS with three channels 
reduces to the three-out-of-three or two-out-of-three secret 
sharing system (SSS) [3], [4] if (h,, h,, h3) = (H(X), 
H(X), H(X)) or (h,, h,, h3) = (0, 0, 0), respectively. 
Hence the SSCS can be considered as an extension of the 
SSS. To realize the two-out-of-three or three-out-of-three 
codes, the rate of each codeword must be equal to H(X). 
However, it will be shown that, if we use the SSCS 
code having (h,, h,, h3) = ((1/2)H(X), (1/2)H(X), 
(1/2)H(X)), which corresponds to an intermediate code 
between the two-out-of-three and three-out-of-three codes, 
the necessary rate for each codeword is half, that is, 
(1/2M X). 
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In Section II, the formal statement of the problem and 
results for the SSCS with two channels are given. The SSCS 
with three channels is treated in Section III. All the theo- 
rems are proved in the Appendices. 

II. SSCS WITH Two CHANNELS 

Let { X,}T=, be a sequence of independent identically 
distributed (i.i.d.) random variables X taking values in a 
finite set X. For the SSCS with two channels shown in Fig. 
2, the code (fi, &) is defined by two mappings: 

f2: Jz- N + &I x I, 2 (1) 

I ‘\ 
I \ 

“2 HlXl 

(4 

L 
Rl 

c$$: I, x I& --f 2-N (4 
where I, = (0, 1, 2, * * a, Mi - l}. Letting X = (X1, 
x,3-. ., Xi), then (WI, W,) =f2(X) E IMl X IM, and 2 
= &( W,, W,) E !ZN. The rates of this code are given by 

i = 1,2. (3) 

The information X must be transferred to the destina- 
tion without errors and must be protected from wire- 
tappers. These conditions may be represented by 

'\' 
h,---L---l, I 

I I' I 
I I '\ 1 
I I 
I I ‘11 

II 
b HIxI-h, HIX) Rl 

Pr{X#$} I c, 
I 

(4 (b) 

$i’(XI~) - hi I c, 
Fig. 4. (a) .!Zf(h,, h2) (h, + h, t H(X)).(b) .%R,*(h,, h2) (0 5 h, i 

i= 1,2 (5) hz < H(X)). 

where 0 I h,, h, I H(X) and (h,, h2) stands for a secur- We also notice that, for a given (R,, R2), we cannot 
ity level. (See Appendix III). If, for all c > 0, there exists achieve a security level such that h, > R, or h, > R,. The 
for N sufficiently large a code (f2, &) satisfying both (4) security level of each channel is dominated by the other 
and (5), (R,, R,, h,, h2) is said to be achievable. Then channel rate. Furthermore, to achieve the most secure 
(h,, h,)-achievable rate region g2(hl, h2) is defined by system, that is, (h,, h 2) = (H(X), H(X)), both R, and R 2 

.9P2(hl, h2) A {(R,, R,): (R,, R,, h,, h2) isachievable}. must be equal to the source entropy H(X). 

(6) III. SSCS WITH THREE CHANNELS 

For this BZ( h,, h2), the following theorem holds. Let us consider the SSCS with three channels depicted in 
Theorem 1: Fig. 3. The code (fs, &) is defined as follows: 

-@z(hI, hz) = .@;@I, hz), (7) f3: %-N - IMl x ZMM, x IM3 (9) 

where $3: I,, x I,+ x I&f3 + 2-N, (10) 
.%;(hl, h2) A {(R,, R,):R, 2 max(h,, H(X) - h,) that is, (W,, W,, W,) = f3(X) and X = &(Wl, W,, W,). 

R, 2 max(h,, H(X) - h,)}. The code ( f3, Go) is required to satisfy the following secur- 

(8) 
ity condition (see Appendix III): 

Proof: See Appendix I. Pr{X#A} SE, (11) 

9Q(hl, h2) is depicted by Fig. 4 (a) and (b), which 
correspond to the cases of h, + h 2 2 H( X) and 0 I h, + 
h, < H(X), respectively. We notice from (8) that if h, + 
h 2 2 H(X), the larger h, and h, become, the more rates 
are required. On the other hand, if h, + h 2 < H(X), the 
smaller h, and h, become, the more rates are required. 
This fact may be explained as follows. In the former case, 
the more rate is used to randomize the information about 
X included in the codeword N$ (i = 1,2). On the contrary, 
in the latter case the more rate is required to reproduce X 
from the codeword y within the equivocation level hi. 

&I(XIW;) 2 H(X) - c, i = 1,2,3, (12) 

&l(Xlyl4$ - h, 5 c, 

i, j, k = 1,2,3, i Zj # k # i. (13) 
From (ll), X can be reproduced from the three codewords 
(WI, W,, W,) within an arbitrarily small error probability. 
However, from (12), wiretappers can obtain no information 
about X from only the one codeword Wj. Furthermore, if 
wiretappers obtain the two codewords (K, Wj), then they 
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can obtain the information about X with the equivocation 
h k’ 

For the SSCS with three channels, (R,, R,, R,, h,, h,, 
h3) is said to be achievable if a  code exists satisfying 
(ll)-(13). The (h,, h,, h,)-achievable rate region 
B3(h,, h,, h3) is defined by 

~3@IJ h2, h3) 

p {(R,, R,, R,): (4, R,, R,, 4, h,, 4) 

is achievable}. (14) 

/: ‘\’ i / I / I j ’ ,HH’XI 
R2 HIXI h, 0 "1' /' h k 

1" 

For this .9t3(hl, h,, h3), the following theorem holds. 

Theorem 2: 
(a) 

where 

g~T(h,, h,, 4) 

A { (4, R,, R,): 

R, 2 max(h,, H(X) - hi, H(X) - hk), 
,I\1 

R2 
HIXI HIXJ-h3 h, 0  W'HIXI R, 

/I' ' 

Fig. 5(b) 

i, j, k = 1,2,3, i #j #  k # i}. (16) 

Proof: See Appendix II. 

W ithout loss of generality, let us suppose that 0  I h, I 
h, I h, 5  H(X). Then % ‘c(hl, h,, h3) is given by Fig. 5  
(a), (b), or (c), which correspond to the following cases, 
respectively: 

Fig. 5(a) 

i 

h, + h, 2  H(X), 

h, + h, 2  H(X), 

h, + h, 2  H(X), 

R, 2 h,, 

R, 2 h,, 

R, 2  h,, 

(174 

(17b) 

(b) 

i 

h, + h, 2  H(X), 

h, + h, < H(X), 

h, + h, 2  H(X), 

Fig. 5. (a) 9?T(h,, h,, h3) (h, + h, 2 H(X), k, + h, 2 H(X), h, + 
h, t H(X)). (b) .CZT(h,,h,,hl) (h, + h, 2 H(X), h, + h, < H(X), 
h, + h, 2 H(X)). (c) .%J(h,, h,,h,) (h2 + h, < fI(X)> h, + h, < 

(184 ff( Xl). 

i 

R, 2  h,, 
R, 2 H(X) - h,, 

R, 2 H(X) - h,, w4 
Fig. 5(c) 

h, + h , < H(X), 
h , + h , < H(X), 094 

i 

R, 2 H(X) - h,, 

R, 2 H(X) - h,, 

R, > H(X) - h,. (19b) 

If (h,, h,, h3) = (H(X), WX), H(X)) or (4, h,, h3) 
= (O,O,O), then the SSCS with three channels reduces to 

the three-out-of-three or two-out-of-three SSS, respectively 
[3], [4]. From Theorem 2, we notice that, to realize the 
three-out-of-three or two-out-of-three SSS, each rate Rj 
must be equal to the source entropy H(X). If (h,, h,, h3) 
= (H( X)/2, H( X)/2, H(X)/2) is used, the necessary 
rate is only half of H(X). 

IV. CONCLUDING REMARKS 

Coding theorems have been proved for the SSCS with 
two or three channels, which are extensions of the corre- 
sponding SSS. We  can also consider the coding problem 
for the SSCS with four or more channels. However, the 
proof for such case is fairly cumbersome, since many 
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parameters must be treated to describe the security level. for N sufficiently large. On the other hand, we have from (5) that 
For example, the following parameters may be considered 
for the SSCS with four channels: h, 2 $H(X,W,) - c 

;H(X,v) - hi I E 
= kH(XwJ - &VI) - 6 

2 iH(X) - I?, - c 

=H(X)-R,-e. (23) 

;H(X,W;W,W,) - hijk’s .E. Equations (21) and (23) hold for any c > 0. Hence 

R, 2 max( h,, H(X) - hi). (24 

However, if the values of these parameters are restricted Simi1ar1yf 
to a certain fraction of H(X) and the source is equiprob- R, 2 max(h,,H(X) -h,). (25) 
able, that is, Pr { X = x } = l/1.%], then useful codes can 
be found for the SSCS with n channels. Such codes are 

Lemma 2 (Direct Part of Theorem I): 

treated in [S], where it is shown that the practical security sI(h,, hd 2 %T(h,, 4). (26) 
can be achieved by the codes for the SSCS at more efficient Proof: Let T[ X] be the set of typical sequences of X. Then 
rates than those of SSS schemes. it is well-known that, for any c > 0 and N sufficiently large, 

Pr{XE T[X]} 2 1 -c, (27) 

ACKNOWLEDGMENT 2N[WX)-rl < IT[ X]l I 2NtfQX)+~l, (28) 

The author would like to thank the referees for their 
2-N[‘f(X)+c1 5 pr {X = x} 5 2-WMW+~l, x g T[ X]. 

helpful comments. (29) 

For simplicity, we use the following notations, and we consider 
APPENDIX I these numbers as integers: 

PROOF OF THEOREM 1 L p p[wX)+fl (30) 
Lemma I (Converse Part of Theorem I): L, B 2Nh, ;, P 2Nb, (31) 

.%(h, h) c .‘@i(h,, hd. (20) z, & L/L, = 2NIWW+~-hl, (32) 
Proof: Let (R,, R2) E .%$(h,,.h,). Then a code (fi, &) ex- 

ists that satisfies both (4) and (5). Hence, for any c > 0, 
L,, A L,L,,/L = 2N[h+h,rfJ(X)-rl. (33) 

Affix the suffixes 0,1,2;.., S;..,‘L - 1 to each x E T[X] 
according to some random order. Then define T(t), t = 
0,1,2;..,z, - l,by 

In the case h, + h, 2 H(X), it is sufficient to show that a code 
exists such that 

= ;H(X,W,) - ;H(X,WIWz) 
R, 2 h, (35) 

R, > h,. (36) 

>hZ--c (21) Let us consider the following code. For the source output 

where the last inequality follows from (5) and Fano’s inequality, 
x ,,,, +s(O I t I L, - 1, 0 5 S < L, - 1) E T[X], the code- 
words ( W, , W,) are given by 

which gives 

;fftW’&) 

I ;H(X,k) 

<+Pr(X+k]log 

+R/(Pr{X#X}) 

1.c 

w, = yz, + t, (37) 

Wz=(y+S)modL,, (38) 

l> 

where y is a uniform random integer such that 0 I y I L,, - 1. 
For x CZ T[ X], we set W, = W, = 0. 

The codewords ( W,, W,) can be decoded as follows: 

{ lXIN - 

(22) 

i= W, mod L, 

i,=(w,-q/t, 

??=(W,-t)modL,. 

(39) 

(40) 

(41) 
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Then the decoder  output X can be  obtained by  Proof: Let (R,, R,, R,) E .%‘,(h,, h,, hs). Then  a  code 

2  = Xi[,, +  i. (42) cf37 $3)  exists that satisfies (ll)-(13). Hence,  for any  e  > 0, 

Clearly, the foregoing code satisfies (35) and  (36) since 0  I IV, I 
L2  - 1, 0  5  W, I L, - 1. It also satisfies (4) because the typical 

R, “;logM, z;H(q) 

sequences  can be  reproduced at the decoder  without error. Fur- 
thermore, (5) can  be  proved as  follows. The  code maps  all +f(w;,ct;w,) 

x E T(t) to the same codeword IV,. Since all the typical se- 
quences  appear  equiprobably, the code satisfies 

(43) 

On  the other hand,  if the random number  y is fixed, one  x in 2h;-E (47) 
each  T(l), t = 0,1,2;.., zr, is mapped  to the same codeword 
Wz. When  y varies within the range 0  5  y I L,, - 1, different where the last inequality follows from (ll), (13), and  Fano’s 

&,x’s in each  T(t) are mapped  to the same W, because L,, 5  inequality. On  the other hand,  the next inequalities also hold: 

L,. Altogether, L2(= &?&)x’s in T[X] are mapped  to the 
same W, with equal  probability. Hence the code satisfies h, 2  ;H(X,yW”) - 6  

iH(X,Wz) - h, <  f. (44 = iH(XKWJ - dH( IqWk) - c 

In the case h, +  h, <  H(X), let the coordinates of points A 
and  CinFig,4(b)(H(X), H(X))and(H(X) -hi, H(X) - h2), =;H(XW,) +;H(W,XW,) -;H(KW,) -c 

respectively. Then  the coordinate of B is (H( X)h,/( h, +  h2), 
H( X)h,/(h, +  h2)). Obviously, a  code exists, say code A, that 
achieves (hiA), hiA)) =  (0,O) at the rate of point A. On  the other 

$H(X,W,) +;H(W,) -;H(fl) -;H(Wk,&) -c 

hand,  from the proof of the case that h, +  h, 2  H(X), a  code 
exists, say code B, that achieves (hiB’, hi’)) =  (H( X)h,/( h, +  2  ;H(X(W,) - ;H(y) - c 

hz), H( X)h,/(h, +  h2)) at the rate of point B. By t ime-sharing 1  
codes A and  B at the ratio >H(X)-R,-2~ 

h, +  h, h, +  h, 

‘- H(X) ’ H(X) ’ 
(45) 

the equivocat ion (h,, h2)  can  be  achieved at the rate of point C, 
that is, (H(X) - h,, H(X) - h2). Although the foregoing time- 
sharing code achieves (hi, h2)  on  the average,  the information 
cannot  be  kept secret using code A. This defect, however,  can  be  
overcome by the following preprocessing. 

Let x,,, x,~; . ., x,,; . ., xJI. be  the source outputs to be  trans- 
ferred, each  of which has  length N, j, s tands for the suffix of 
typical sequences,  0  <jr I L  - 1. Let y(j) be  the binary repre- 
sentation of j. Then  each  y(j) has  length N[ H( X) +  c]. Per- 
mute the binary sequence of y(j,)y(j,) . . . y(j,) as  in Fig. 6, 
redivide it into L  sequences,  say z(l), z  (2), . ., z(L), and  then 
use  the t ime-sharing code for these sequences  z(i). 

xJ, xJ2 
. . . . . . . . . . 

xjL 

I , 

Fig. 6. Permutation of source output x. 

APPENDIX II 
PROOFOFTHEOREM2 

Lemma 3  (Converse Part of Theorem 2): 

gx(h,, h,, h) c g?(hl, h,, hd. 

(48) 
where the last inequality follows from (12). From (47) and  (48), 
we have  

R,>max{h,,H(X)-h,,H(X)-h,}. (49) 

Lemma 4  (Direct Part of Theorem 2): 

g3(h,,h,,h,) zS;(hl,h2,h3). (50) 

Proof: Suppose that 0  I h, I h  z I h, I H(X). Then  the 
rate region .%‘T(h,, h,, h,) is given by  (17b), (18b), or (19b). 

In the case of (17a), it is sufficient to show that a  code exists 
that satisfies (ll)-(13) at the following rates: 

R, >_  h, R, r h, R, 2  h,. (51) 

For simplicity, we use the following notations again: 
L $ yvh(X)+rl (52) 

L, P 2N”z i =  1,2,3 (53) 

L,, p  L,L, 
L  ’ 

i, j =  1,2,3, i f j. (54) 

Furthermore, the numbers  just def ined and  L,/L,, L/L, can  
be  approximated by  integers with any  accuracy for sufficiently 
large N. 

Let yi, y2, ys be  uniform random integers taking values in the 
following ranges: 

0  I y1  I L,, - 1  (55) 

0  I y2  5  L,, - 1  (56) 

(46) o<y+z3-1.  (57) 
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Now let the source output be x,,.,+~ E T[X](O I t I z, - 1, 
0 I S I L, - 1). We define the code by 

K =nG +Y3 (58) 

W, = ( y2z3 + y3 + t) mod L, (59) 

W,=(Y,L,~+Y~+Y,+S)~O~L,. (60) 
The source output can be decoded from (W,, W,, W,) as follows: 

T3 = W, mod z3 (61) 

9, = (Y - ?3,)& (62) 
?= {(W, - y3)mod L,} modz, (63) 

(64) 

J?=(W3-~3L23-jCI-?l)modL,. (65) 

Clearly, this code satisfies (51) since 0 I W  I L,, i = 1,2,3. 
Equation (11) is also satisfied by (27). Since W, contains no 
information about (t, S), we have 

;H(X,W,) 2 H(X) - c. (66) 

W, contains the information about t. However, y2z3 + y3 in (59) 
varies uniformly and randomly over the same range as t, 0 5 t I 
L, - 1. Hence 

$H(X,M”I) 2 H(X) -c. (67) 

Although W, contains the information about S, we have also 

;H(X,W,) 2 H(X) -c (68) 

because, from L,, I L,, I L,, (y3 L,, + y1 + y*) mod L, in (60) 
varies uniformly and randomly over the same range as S, 0 I S 
1. L, - 1. 

If wiretappers obtain (W,, W,), they can reproduce t from 
(61)-(63). However, they can obtain no information about S. 
Hence 

$H(X,WIWz) - h, < c. (69) 

Next suppose that (W,, W,) is wiretapped. Then, since (y,, ys) 
can be uniquely determined from W,, the wiretappers can obtain 
the information 

( y2 + S) mod L, (70) 

From (56) and L,, I L, , the number of the possible S is kx3. 
Since no information about t can be obtained, L2( = L,, L,) 
possible (t, S)‘s exist. Hence 

;H(X(W,w,) -h, < c. (71) 

Finally, suppose that ( W,, W,) lgets out. If we assume a certain 
t for this W, , we can uniquely defermine ( y2, ys). Then, from W3 , 
we can obtain the information 

(yl + S)mod L,. (72) 

Hence L,, possible S’s exist for each t. Since the number of t is 
&, there are L, (= L,,&) possible (t, S)‘s. Therefore, 

;H(Xlw,W,) -h, < E. (73) 

In the case of (18a), we first show that a code exists, say C,, 
that satisfies 

( hiA’, h’;“, hiA)) = (H( X),0,0) (74) 

at the rate of point A in Fig. 5, that is, R, = R, = R, = H(X). 

From Theorem 1, for any e > 0 a code exists such that 

R,>H(X)-r R,>H(X)-E (75) 

;H(X,W,) 2 H(X) -E ;H(X,W*) 2 H(X) - E (76) 

Pr{X=R} (6 ;H(X,W’w’) < E. (77) 

By setting W3 = W, in this code, we can obtain code C, because 
the code satisfies 

R,>H(X)-c (78) 

;H(XIW,) 2 H(X) -E (79 

;H(X,WIWz) =;H(X,W,W,) I c (80) 

;H(X,w,w,) = ;H(X,W’) 2 H(X) - ‘. (81) 

On the other hand, from the proof of the case of (17a), a code 
exists, say C,, such that 

(R,,R,,R3) 
= ( ’ hi” hi”, h’,“) 

(h, + h, + h, - H(X))H(X) &H(X) &H(X) = 
h, + h, ’ h, + h, ’ h, + h, 

(84 
where the rates correspond to the point B in Fig. 5. By time-shar- 
ing codes C, and C, at the ratio 

h, + h, h, + h, .- 
‘- H(X) ’ H(X) ’ 

(83) 
we can obtain a code that achieves (h,, h,, h3) at the rate 

(4, R,, 4) = (h,>ff(X) - h,, H(X) - hd. (84) 

In the case of (19a), we first show that a code exists, say CD, 
that satisfies both (R,, R,, R3) = (H(X), H(X), H(X)) and 
(hi”‘, h’,“‘, hiD’) = (O,O,O). 

Let x, E T[ X] and y(j) be the source output and the binary 
representation of j, respectively. By dividing y(j) into three 
parts of equal length, we have y(j) = ( y,, y,, y3) where each 
y, , k = 1,2,3, has length N{ H( X) + e}/3. Furthermore, let r, 
and r, be binary random integers that have length N{ H( X) + 
c }/3. Then the code CD is defined by 

W, =(rlTY2@r27Y3@r2) (85) 

cI/T7=(~~@fi,y~@r,,r,) (86) 

%=(Y, @rl,rl @r2,.v2@9) (87) 

where @  stands for the bitwise modulo two summation. Clearly, 
code C,, satisfies 

;H(X,v) 2 H(X) - c, 

;H(X,ey) I c. 

By time-sharing code CD and code C, at the ratio 

(88) 

(89) 

h, - h, 
‘-H(X)-h,-h,: 

h, - h, 
H(X) -h,-h,’ (90) 
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we have  code C,; that satisfies and  .@(h,, h,, h,), are given by  

W ,o(h,,h,) = u  .%(h;,h;) (98) 

(4, R,, R3) = (H(X), H(X), H(X)) (92) 

where the rates correspond to point E in Fig. 5. On  the other 
.%‘(h,A,A) =  u  .%(hi,hi,h;). 

h;>h, 
i=1,2,3 

(99) 

hand,  from the proof of the case of (17a), a  code exists, say C,, Furthermore, it can  be  easily shown that 

% (h,,h,), ifh,+h,>H(X) 

[.22(h,,H(X)-h,)u.%“,(H(X)-h2,h2)]C, ifh,+h,<H(X) 
(100) 

.@‘(hl,b,h3) = 

‘.%(h,,h,,h,), if (17a) holds, 

[~3(h,,H(X)-h,,h,)u~3(h,,h,,H(X)-h,)lC, if (18a) holds, 

[R,(h,,h,,H(X)-h,)U~3(h,,h,,H(X)-h,) 

U~3(H(X)-h,,H(X)-h,,h,)]C, if (19a) and  h, + h, 2  H(X) hold, 

[~3(hl,H(X)-hl,H(X)-hl)U~3(H(X)-hz,h2,H(X)-h2) 

i U~3(H(X)-h,,H(X)-h,,h,)]=, if (19a) and  h, +  h, < H(X) hold, 

(0 I h, I h, I h, I H(X)) (101) 

that satisfies 

(R,tR,,R,) 

= (7 > 
hif-1 h\F’, h’,F’ 

where the rates correspond to the point F  in Fig. 5. 
Finally, by  t ime-sharing codes C, and  C, at the ratio 

h, +  h, 

‘- H(X) . 

h2  + h, 

H(X) ’ 
(94) 

we obtain a  code that achieves (h,, h,, h3)  at the rate triple 

(R,>R,,R,) =(H(X) -h,,H(X) -h,,ff(X) -4). 
(95) 

The  above  code attains (h, , h,, h,) only on  the average,  but this 
defect can  be  overcome as in Appendix I. 

APPENDIX III 

Someone may think that the condit ions 

;H(X,&) 2  h, - c (96) 

and  

;H(X,b:;y) 2  h, - c (97) 

are appropriate rather than (5) and  (13), respectively, because 
only the lower bounds  of the equivocat ions should be  given in 
order to specify the security level. If (96) and  (97) are used  
instead of (5) and  (13), the achievable rate regions, say 2:( h,, h,) 

where [ .I” denotes the convex hull. 
.G%‘t ( h, , h  z ) may be  desirable rather than L%‘2 (h 1, h  2). However,  

S3(h,, h,, h,) isusefulratherthan .%‘~(h,, h,, h,). Forinstance, 
when  we wish to design an  SSCS with three channels 
such that (l/N)H(X,W,W,) =  (l/N)H(X,W,W,) =  0  and  
(l/N) H(X, W 2  W,) =  H(X), that is, h, =  H(X) and  h, =  h, =  
0, we cannot  obtain the right achievable rate region by  
22: ( H( X), 0,O) while B3 ( H( X), 0,O) is the desired region. Fur- 
thermore, .?&‘( h, , h,, h3)  can  be  easily calculated from 
23  (h t , h  z, h  s). Therefore, the use  of absolute values for equivo- 
cations may be  desirable for the SSCS with three or mbre 
channels.  

PI 

PI 

[31 

[41 

[51 

[61 

[71 
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