
1

An Energy Conservation Method For Wireless
Sensor Networks Employing a Blue Noise

Spatial Sampling Technique
Zeljko Ignjatovic, Mark Perillo, Wendi Heinzelman, Mark Bocko

Department of Electrical and Computer Engineering
University of Rochester
Rochester, NY 14627

{ignjatov, perillo, wheinzel, bocko}@ece.rochester.edu

I. INTRODUCTION

In this work, we consider applications of wireless
sensor networks where a spatially band-limited physical
phenomenon (e.g., temperature, pressure, low-frequency
vibrations) can be sufficiently monitored by a subset of
the nodes (randomly) deployed in the environment. In
other words, the total number of sensors deployed is
such that if the sensors were placed uniformly within
the area, the Nyquist criteria would be met in terms of
spatial frequency. While such a random distribution does
not provide ideal uniform coverage, it does guarantee
within a reasonable likelihood that the area is covered
densely enough to meet, if not exceed, the Nyquist
criteria requirements within most subregions. We pro-
pose a method that determines which sensors within
the more densely covered subregions should be selected
to acquire data from the environment and which nodes
should remain inactive in order to conserve energy. The
proposed method is especially suitable for applications
where it is desirable to trade spatial resolution for sensor
network longevity. Our proposed method chooses sensor
subsets such that the sensor positions can be mapped into
the blue-noise binary patterns that are used in many im-
age processing applications [1]. The method guarantees
that the subsets would be chosen such that each subset
provides a near optimal signal-to-noise ratio for the given
sensor distribution and desired number of active sensors
[2]. Meanwhile, the method also guarantees that the
sensor nodes with the minimum residual energy are the
primary candidates for deselection (i.e., they are the first
to be turned off).

II. BLUE NOISE BACKGROUND

A blue noise pattern is a statistical model for de-
scribing ideal aperiodic dispersed dot patterns [3]. It
is considered ideal in terms of spatial and spectral
characteristics. The ideal binary blue noise pattern is

a collection of similar sized dots that are stochastically
distributed in a manner that is as homogenous as possible
within an area, while maintaining a stochastic nature
(i.e., uniform distribution is prohibited). By distributing
dots in such a way, the resulting spectral content of the
pattern is composed entirely of high frequency content.
A subset of M dots, chosen from N possible locations
within a D×D area, defines a blue-noise binary pattern
if the resulting pattern has a stochastic nature, where the
average distance between dots (λb) is given by Equation
1 and the resulting pattern has no frequency content
below the blue noise principal frequency fb given in
Equation 2.
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General rules for generating a pattern that has blue-
noise characteristics are that the dots are to be placed
within the pattern such that the spectrum of the resulting
pattern

1) is noisy and lacks any coherent spikes of energy
and

2) has a deficiency of low-frequency energy.

Several algorithms have been proposed to generate
binary blue noise patterns with various success [1],
[4]–[7]. The method that is of interest to us is that
proposed in [1] and improved in [5]. In their work, the
authors propose a dart throwing method, which mimics
a stochastic Poisson disc method. In this method, a
new point is added to the point set if and only if
no other point is inside a specified radius centered at
the location of the new point. A low-pass spatial filter
is then used to determine which points contribute the
most low-frequency content (the points with the highest
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post-filter value). These points are subject to relocation
within the regions with the least low-frequency content.
The problem with this method is that the dart throwing
pattern converges to uniform distribution, which is not
allowed by the blue noise specifications. Thus, the low-
pass filter relaxation method should stop after a certain
number of iterations. The exact number of iteration steps
depends on the initial pattern and has been an ongoing
research challenge.

III. APPLICATION OF BLUE NOISE SAMPLING TO

SENSOR MANAGEMENT

In this section, we propose a method to decide which
nodes in a wireless sensor network should be used to
provide coverage of the environment and which should
remain off for reasons of energy efficiency. Let us
first consider an application where N sensor nodes are
randomly deployed inside the area to be observed such
that in all subregions of the area, it is likely that the
density of the sensor nodes is more than necessary to
meet the requirements of the Nyquist criteria. We assume
an image grid within the observed area that is dense
enough so that each sensor’s location can be precisely
mapped into a single grid point and each point on the
grid is associated with no more than one sensor. If a
sensor is associated with a grid point, the grid point is
assigned a value of 1; otherwise, it is assigned a value
of 0. The resulting binary pattern should have white
noise spectral characteristics because of the way in which
the sensor nodes are deployed. In our proposed method,
a low-pass filter relaxation algorithm is applied to the
initial binary pattern to determine which nodes are not
necessary to observe the area. The characteristics of this
low-pass spatial filter should depend on the nature of the
variable that is being observed. More specifically, the
coefficients of the low-pass filter are determined such
that the frequency content of the observed variable falls
within the filter’s pass band. Meanwhile, the selection of
the order of the filter is essentially a tradeoff between
the desired performance of our proposed method and
computational cost. The proposed algorithm determines
which point in the filtered grid has the largest spatial-
low-frequency content (the point with the highest value
after the filter has been applied) and removes the most
nearby sensor from the set of active sensors. These steps
are carried out iteratively until the maximum filter output
drops below a predetermined threshold or the number
of remaining active sensor nodes drops below a certain
value. The resulting pattern is shown to have blue noise
spectral characteristics, guaranteeing the best possible
signal-to-noise ratio for a given initial sensor placement
and spatial distribution of the physical phenomena being
measured [2].

Now, let us consider an application where the number
of sensor nodes is much more than sufficient to meet the
Nyquist sampling criteria. In such applications, spatial
resolution can be traded for energy efficiency, meaning
that a smaller subset of M sensor nodes (M < N ) could
be used to observe the area. The subset of M nodes
is to be determined on the fly such that it constitutes
a blue noise pattern while exercising care with respect
to the residual energy of the sensor nodes. Once again,
the method assumes a similar image grid as that in the
previous paragraph. However, here we map energy costs
- assigned to be a monotonically decreasing function of
the residual energy of the sensor nodes - to the image
grid instead of the binary value as we did previously.
In this case, the low-pass filter is used to determine
which grid points are critical in terms of energy as well
as low spatial-frequency content. Sensors closest to the
grid points which have the maximum post-filter value are
subject to be excluded from the active subset. These steps
are repeated iteratively until the active subset consists of
M sensor nodes or the PSNR reaches a suitable level.
Following the selection algorithm, the active subset of
M nodes is used to observe the area for a certain time
interval. After this interval, the selection algorithm is
repeated again with updated energy information of the
sensor nodes within the network.

Finally, we propose another energy-efficient sensor se-
lection approach. In this approach, active sensor subsets
are created in a similar manner as in the first approach.
However, rather than deterministically deselecting nodes
in areas of the largest spatial-low-frequency content,
nodes are deselected with a weighted probability propor-
tional to their post-filter value. With the introduction of
this random factor, many active subsets, each providing
the necessary blue-noise sampling characteristics, can
be calculated. It is possible to schedule the use of
each of these subsets so that the total lifetime of the
monitoring application is maximized. This optimization
can be performed through a simple linear programming
approach.

IV. SIMULATIONS

We simulated a network of 5000 sensors randomly de-
ployed within a 128×128 grid, of which a given number
were activated to monitor a bandlimited phenomenon.
We compared the blue noise sampling approach with
the random selection of sensors (essentially, a white
noise sampling approach). Typical locations of activated
sensors using the blue noise sampling method and using
the random method are shown in Figures 1a and 1b,
respectively.

Following the selection of nodes, the original images
were reconstructed from the sensor samples and the
mean square errors were calculated. As expected, the
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(a)

(b)

Fig. 1. Typical plot of the activated sensor locations using the blue
noise sampling method (a) and using the random method (b)

mean square error increases as the number of sensors
selected decreases, as can be seen in Figure 2. However,
the blue noise sampling method shows more immunity to
the decreased sampling rate and its relative performance
is best for a smaller number of activated sensors, reduc-
ing mean square error by as much as 85% compared to
the random selection method when selecting 1500 active
sensors.

We plan to run extensive simulations using the energy-
aware sampling methods to observe the tradeoff between
power consumption/network lifetime and accuracy of
phenomenon measurement. We would also like to im-
plement these selection in the ns-2 network simulator to
observe the translation of number of activated sensors
to actual power savings and network longevity when
factors such as routing and MAC layer overhead are
considered.
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Fig. 2. Mean square error for blue noise sampling and random
sampling
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