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ABSTRACT

We consider the sensor broadcast problem: in our setup, sensors
measure each one pixel of an image that unfolds over a field, and
broadcast a rate constrained encoding of their measurements to
every other sensor—the goal is for all sensors to form an estimate
of the entire image. In recent work, we proposed a protocol that
uses wavelets to decorrelate sensor data, taking advantage of the
compact support of the basis functions to keep costly inter-sensor
communication at a minimum. In this paper, we prove an asymp-
totic optimality result for these protocols: the rate of growth for
the traffic they generate is

���������	��
���
����
(



nodes, total distor-
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), matching exactly the rate of growth of the rate/distortion

function. We thus close the gap between theory and practice for
this new form of massively distributed (one pixel/sensor) image
compression, by providing the first efficient and provably optimal
algorithms to solve the sensor broadcast problem.

1. INTRODUCTION

1.1. Problem Statement

Consider the following data transmission problem.



nodes ��� �
are placed on a square grid of unit area, at locations

��� ������� ���� �� � � �� � � , �! #" �%$  '& 
 (for



large). Each � � � observes only
one pixel ( � � of an image defined over the field. This image
is modeled as some spatial stochastic process with rate/distortion
function )+* �,
�� , having the property that the correlation between
samples increases as the distance between them in the grid de-
creases. Each � � � wants to communicate an approximation of
its (-� � to every other node in the network. Each ��� � can only
send messages to and receive messages from its grid neighbors� �,.�/�0 �1� � ��0 �2.�/3� � �546/�0 �1� � �,0 �748/ , and these links have some finite ca-
pacity 9 . In the sensor broadcast problem, the goal is for each
node � � � to broadcast a rate constrained encoding of the sample
observed to every other network location, so that collectively, all
nodes can form an estimate of the image whose total distortion: ��;	� ( �8<( ���>=?
 , for any prescribed value


A@?B
, for a distortion

measure
;	��C � C � . This setup is illustrated in Fig. 1.
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Fig. 1. Setup for the sensor broadcast problem. By having all
nodes broadcast an encoding of their observations to every other
node in the network, each node in the network is able to form an
estimate of the entire image.
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In terms of applications, a most compelling one is the use of
a sensor broadcast protocol as a building block in the construction
of a distributed transmission array for the problem of reachback
communication in sensor networks [1]. In this problem, the goal
is to move the field of observations picked up by all sensors to a
far receiver. What makes the reachback problem interesting is the
fact that typically, each individual sensor does not have enough
resources to generate a strong information bearing signal that can
be detected reliably at the far receiver. A sensor broadcast protocol
however allows all nodes to agree on a common stream of bits to
send, and then all these nodes can synchronize their transmissions
so as to generate a strong signal at the far point, a signal that results
from coherently superimposing all the weak signals generated by
each of the sensors [2]. This setup is illustrated in Fig. 2.

Fig. 2. Cooperation among sensors to reach back to a far receiver.
A good analogy to describe the role of a sensor broadcast protocol
in the context of reachback is that of a symphonic orchestra. When
all instruments in the orchestra play independently, all we hear
is noise; but when they all play according to a common script,
the music from all instruments is combined into a coherent play.
The bits distributed during sensor broadcast play the role of that
common script for a later cooperative transmission step.

1.2. Main Contributions and Organization of the Paper

In previous work, we have presented the design of signal pro-
cessing structures for the distributed computation of decorrelating
transforms, to be applied on images generated by sensor arrays [6].
Decorrelation by means of a linear transform of the input, fol-
lowed by bit allocation to an array of scalar quantizers operating
on the transform coefficients, is a widely used data compression
technique, whose rate/distortion performance is essentially opti-
mal. The challenge however in the context of sensor networks lies
in the fact that sensor measurements are not all available at a sin-
gle location, but are distributed in the form of a single pixel per
sensor. As a result, distributed algorithms are required to perform
those computations. One such possible algorithm is shown in Ta-
ble 1 (details on this algorithm, and an extension to 2D, can be
found in [6]). The analysis of performance of this algorithm, both
analytically and by means of numerical simulations, is the main
contribution presented in this work.

In the rest of this paper, in Section 2 we carry out said perfor-
mance analysis, and in Section 3 we offer concluding remarks.



SensorBroadcast (filters prqts�quprvws�v , filter length x , node id y )
for z @ � // index running over scales

if ( y is of the form

|{�}

, for some

�~��

)�
// this node has to carry out some computations
Request samples

=?�|��C � ��� } .�/ ��C���{ . } 48/ $ ��� (from subnets
{3
�������{3
�� x � � at

scale z � � ), and wait until all x samples arrive;=?�|��C � ��� } ��C���{ . } 
������ � �2��� prq �%{2
�� $ �>=?�|��C � ��� } .|/ ��C���{ . } 46/ $ ��� ;=?�|��C � ��� } ��C���{ . }3
������ � �2��� s q �%{2
�� $ ��=?�|��C � ��� } .|/ ��C���{ . } 48/ $ ��� ;
Broadcast the new sample

=?�|��C � ��� } ��C���{ . }�
���� to every other sensor;
Send the new sample

=?�|��C � ��� } ��C���{ . } 
��>� to sensor nodes at scalez � � which requested it;�
;

In parallel, listen to broadcasts from other sensors and record;
When enough data has arrived, use p v and s v to reconstruct the field.

Table 1. Pseudocode description for the algorithm executed at the y -th sensor. Note that each sensor will have multiple execution threads,
and this is only one of them: network I/O for example, with functions used here, would be one such other thread.

2. PERFORMANCE EVALUATION

In this section we present results on the performance of the proto-
cols from [6]. First we consider an asymptotic analysis based on
sinc wavelets, then we present a simple estimate on energy con-
sumption, and finally we present some numerical results.

2.1. Asymptotics Derived from the 1D Sinc Wavelet

2.1.1. Definitions and Problem Statement

Let � � be a continuous time stationary Gaussian process, with
mean function ¡�¢ �¤£��¥�¦B , and autocorrelation function )§¢ ��¨©�ª~«>¬3�®­>�

. Following [4], we assume ) ¢ is bandlimited with band-
width ¯ , i.e., <)°¢ �%�	���±B

for ² � ² �´³ ¬ ( <)§¢ is the Fourier
transform of ) ¢ ). Let µ be a (large) positive integer. We de-
fine a discrete time process

� � � � ��¶�· , consisting of samples
of � taken at a distance of /· :

� � has mean ¡|¸ ��
��¹�ºB
, au-

tocorrelation ) ¸ ��»¹��� )§¢ ��»¹� µ � , and power spectral density<)¼¸ �®½>�ª� µ <) ¢ � µ ½�� . Consider now the sinc wavelet in discrete
time, defined by the pair of filters¾ ¿ �®½��¥�ÁÀ � � B  u² ½ ² =ÃÂ ¬B � Â ¬  u² ½ ²� #Ä ¾ / �®½>�¥�ÁÀ B � B  u² ½ ² =ÅÂ ¬� � Â ¬  t² ½ ²1 #Ä
properly normalized. We implement it using a tree structured fil-
ter bank, in which an input signal is first filtered with both

¾ ¿
and

¾ / , then subsampled by a factor of 2, and then the process
is iterated on the branch filtered with

¾Æ¿
. Let Ç } �®½�� denote the

frequency response of the system corresponding to the applica-
tion of

¾ ¿
+subsampling z times followed by one application of¾ / +subsampling, and È } �®½�� the frequency response correspond-

ing to z � � applications of
¾ ¿

+subsampling. Then it is a trivial
exercise to show thatÈ } �®½��É� Ê {�Ë Ì � B  t² ½ ² = Â¬ ËB � Â¬ Ë  t² ½ ²1 #ÄÇ } �®½��É� Ê { ËÎÍrÏÌ � Â¬ Ë�Í©Ï  t² ½ ²Ð Â¬ ËB � otherwise.

In a tree structured filter bank of depth Ñ , an input signal with PSD<)¼¸ �®½>� is transformed into Ñ � � signals <)§¸ �®½�� ² Ç } �®½�� ² ¬ ( z �� ����� Ñ ), and <) ¸ �®½�� ² ÈªÒ �®½>� ² ¬ . Our goal next is to determine the

minimum number of bits required to encode <)¼¸ �®½�� , by encoding
the resulting Ñ � � transform signals.

2.1.2. Rate Computation

Since ) ¢ has bandwidth ¯ , we have that <)§¸ �®½��>�ÓB for ² ½ ² �³¬ · . As a result, solving for z in
Â¬ Ë�Í©Ï ��³¬ · , we find that for z� Ô �����Õ� Â ·³ ��Ö , the support sets of <)¼¸ �®½�� and Ç } �®½�� are disjoint, and

therefore that for all such z , <)¼¸ �®½�� ² Ç } �®½�� ² ¬ �×B , for all
� ÄØ ½  'Ä . This means that the first

Ô �����	� Â ·³ ��Ö branches of the filter
bank contain no information, and hence no bits need be spent on
the highpass projections.

Consider now Ñ � Ô �����	�2Â ·³ ��Ö . We have that <) ¸ �®½�� ² È�Ò �®½�� ² ¬� µ <)§¢ �®½ µ ��{ Ò , for
� Ä� ½  #Ä . What is the minimum num-

ber of bits per sample required to encode this process? The answer
is given by the rate/distortion function: a Gaussian process with
PSD <( ��Ù¼� can be enconded with average per-sample distortion Ú
using at least ) � Ú � bits/sample, where

) � Ú �Û� Ü Â. Â �{ ������Ý <( �®½��Þ©ßáà ;�½Þ ß � À Þ � B�= <( �®½���= Þ<( �®½�� � <( �®½���@ ÞÚ � Ü©â�ãÕä�å*Ðæ ãèç%é	ê�ë <( �®½���;�½°�
(This is the standard reverse waterfilling argument: we specify a
target average distortion Ú , and then need to search for a thresholdÞ

based on which to compute ) � Ú � .)
Next we note that, since for each sample of this filtered process

there are
{ Ò samples of the input process, to achieve an average

per-sample distortion
;

in the input process we must evaluate the
rate/distortion function of this filtered process at a distortion Ú �;Ð{ Ò . So we obtain an estimate of

Þ
from;Ð{ Ò � Ü â�ã	ä�åìÕí æ ãèç%é	ê�ë <)¼¸ �®½���;�½  Ü â�ã	ä�åìÕí æ ãèç%éÕê�ë Þ ;�½� Þ ² � ½#î <)§¸ �®½��ª= Þ � ² = Þ ¯µ �

and therefore we have that
Þ �Ø;Ð{ Ò µ � ¯ . Hence, defining ï �



ð�ñ3òèó <)§¢ �%�	�>=?ô , we have that

) ��;Ð{ Ò �  ÜöõÌ�÷. õÌ�÷ �{ ����� Ý µ <) ¢ �®½ µ ��{ Ò;Ð{ Ò µ � ¯ à ;�½
 ¯ µ ������ø ¯uï;úù �

2.1.3. Interpretation of the Rate Estimate

To avoid having to deal with boundary conditions, in the compu-
tation of the rate estimate above we worked with infinitely long
sequences, and under that assumption, we obtained the average
number of bits required to encode each sample. Suppose now we
take a segment of finite length, and wlog, consider this segment
to be the interval û B � �Îü . In this case, we have a total of µ sam-
ples, and the total rate required to encode them each with distor-
tion

;��×
�� µ (



is the total distortion in the µ samples) does
not exceed µ C�� ³ · �����þý ³Æÿ� � �¥� ���������	� µ �3
���� .

Now, we claim that this establishes the asymptotic optimal-
ity of the proposed algorithms. We know that at high rates, the
performance of a scalar quantizer followed by an entropy coder is
within 0.255 bits of the rate/distortion bound (i.e., of the best per-
formance achievable by vector quantizers of any length) [10]—that
is, scalar processing of these filtered samples still achieves a rate
of growth of

���������©� µ ��
���� . But we also know from [4] that the
rate/distortion function of the entire field of measurements grows
exactly like

���������	� µ �3
���� , and therefore, the proposed techniques
are able to match that optimal rate of growth.

2.2. Energy Consumption Estimates

Due to the lack of actual sensor readings to work with, we chose
to model sensor readings as a 2D stationary Gaussian process,
with autocorrelation function ) ��¨	� �ö� ¯ � Ä � sinc

� ¯ ¨©� (where
sinc

�¤£��¥�������8�¤£���� £
), and power spectral density <) �%�	��� rect

ý ó¬ ³ �
(where rect

�%�	��� � , if ² � ² = /¬ , and rect
�%�	���ºB

otherwise).
Therefore, our autocorrelation function has maximum bandwidth{ ¯ , where this bandwidth is measured in units of cycles/meter
(instead of the classical temporal frequecies measured in units of
Hz, or cycles/second). In Fig. 3, we show estimates of energy con-
sumption for the transmission of each network snapshot.
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Fig. 3. Back-of-the-envelope estimates on energy consumption.
In the horizontal axis we plot the spatial bandwidth ¯ of the
process being sensed; in the vertical axis, we plot the function�
	 C ¯ ����� ý ³ ·� �

, for an energy/bit
��	 ��
������

nJ/bit (ob-
tained from the specification of an experimental UWB radio inter-
face), number of nodes µ , and average distortion


�� µ � BÐ� B �
(a number much smaller than the spatial bandwidth ¯ , result-
ing in negligible distortion in the reconstructions obtained), forB  ?¯  � B�B�B .

Note two important aspects of Fig. 3. First, whereas the value
of
�
	

corresponds to actual hardware, the choice of ¯ clearly
depends on the statistics of the measurements to be picked up by
this network. Lacking real measurements, all we can do is pick a
reasonable range of values for this spatial bandwidth, and look at
how the amount of traffic generated by our network would scale—
the range of

B  º¯  �� B�B�B is chosen on the basis that, for¯ � � B�B�B , we are considering spatial processes with fluctuations
in the order of 1mm, and this appears to us more than enough to
capture phenomena like temperature / light / seismic activity / etc.
Note also that a most important result that follows from theoreti-
cal developments is that the amount of traffic depends only on the
average mean-squared error and on the spatial bandwidth ¯ , but
not on the number of nodes in the network: more nodes in the net-
work generate more data, but this data will be more correlated, and
therefore can be compressed more. This is the key intuition that
all of our ideas about joint routing and compression are built upon.

Basically, the plot above shows that it should be possible to
sense a spatial process with fluctuations of duration in the order of
1mm, replicate a snapshot of the measurements collected by the
entire network at all nodes, and consume approximately � B�� 
�� ,
or about 0.1 Joule per snapshot at each node participating in the
broadcast operation. This number appears well within the resources
of existing batteries—for example, browsing on the web we found
one commercially available NiCd battery capable of storing ap-
proximately 500 Joules.

2.3. Numerical Results

We complement the performance analysis outlined above with some
numerical simulations. The algorithms described above have been
implemented both in MATLAB and in C. The simulator in C im-
plements exactly the algorithm of Table 1 (in two dimensions),
for a square grid network. This simulation includes detailed mod-
els of internal buffers in the network, generates traces of which
coefficients are sent over which link at which point in time, etc.,
but works only for Haar filters. The MATLAB simulation works
with any filters in the wavelet toolbox, but does not implement all
the detailed network functions implemented in C: it simply does
a centralized computation of the wavelet coefficients, quantizes
them, and then picks one particular link in the square grid and
counts how many bits would go through that link. The rationale
for working with two simulators is that there are aspects which are
much easier to code up in C (network simulation), whereas there
are others which are much easier to code up in MATLAB (wavelet
processing). Yet an important piece of evidence that points to the
correctness of both implementations is the fact that, when using the
MATLAB simulator with Haar wavelets, the traffic loads obtained
match exactly those of the C simulator. A plot of the resulting
traffic loads is shown in Fig. 4.

3. CONCLUSIONS

In this paper we have continued with work started in [4, 5, 6], on
the compression of data collected by dense sensor networks. We
have shown in this work how wavelets can effectively decorrelate
sensor data under decentralization constraints, via both analysis
and numerical simulations.

3.1. Some Comments on the Work of Marco et al. [12]

In recent work, Marco et al. [12] expressed doubts about the cor-
rectness of some of our results (joint with A. Scaglione) published
in [4]. Since those are closely related to the results presented in
this paper, we feel it is appropriate to offer some clarification.
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Fig. 4. Traffic loads based on two different Daubechies wavelets:
db1 (the Haar wavelet), and db16, for the Gaussian process de-
scribed above, with a sampling interval of /¬ Ë — z is the horizontal
axis, and the number of bits generated is the vertical axis. Observe
how, in the semilogx plot, the curve is nearly a straight line, thus
suggesting the log behavior predicted by theory. Observe also that
as we increase the number of zeros at Ä in the filter, the traffic load
appears to become a straight line more closely.

In [4], we established the following:
� There exist joint routing and data compression strategies ca-

pable of generating a total of � �������-��
��3
���� bits/snapshot.
� Under some conditions, the rate/distortion function of the

whole network grows as � �������Õ��
���
���� bits/snapshot.

From these results we derived a number of conclusions, both of
which (results and conclusions) were questioned in [12].

One inference we made is that it should be possible for any
node in a sensor network to obtain an estimate of the entire field of
measurements, within any prescribed distortion value, for asymp-
totically large networks. If we observe the asymptotic form for the
rate of growth of the rate/distortion function we note that, provided
the average per/sample distortion

� � �Ó��� � � (i.e., that it is main-
tained constant), the total number of bits generated is constant too.
Therefore, as we claimed in [4], assuming a constant per-sample
distortion, the size of a snapshot does not depend on the size of the
network: as more nodes are added into the network, more data is
generated, but this data is more correlated and it can be compressed
more. It is not correct though that any total distortion



can be

achieved, as we said in [4]. It follows from the max-flow/min-cut
theorem that each node can receive only

��� � � bits, since that is the
capacity of a cut with a receiver on one side, and all other nodes
on the other side. Such a cut can easily be shown to be a minimum
cut—for reference see, e.g., [7, Ch. 26]; using a different type of
argument, a similar claim was made in [12, pp. 10–15]. Therefore,
our statement should have been that a distortion



in a network

of size



can be achieved, for all



, but only provided that the
capacity of the individual network links x ���+�������Õ��
���
���� .

Another aspect of our work doubted in [12] refers to our use of
a definition of capacity which does not involve any notion of time.
We would like to point out that there exist notions of capacity in
the networking literature which do not necessarily involve time.
One such example, not mentioned explicitly in [4] (and we regret
having assumed this was obvious, thus omitting appropriate ref-
erences) is the notion of maximum stable throughput [13]—in the
context of our work, we later expanded significantly along these
lines in [3]. We say that a throughput of

���%�|��
����
is stable if, for

an aggregate traffic generated by all sources of
���%�|��
|���

bits, the
size of the longest internal queue in the network remains bounded.
As showed in [4],



independent encoders generate snapshots of

size
����
+�����	��
����

bits, for any distortion



(



is a constant hidden
by the big-oh notation). As a result, it is not difficult to show that
there are buffers in the network whose size grows as

���������	��
����
,

and therefore that for any rate � �#B , the injection of � bits at each

node results in a total throughput that is not stable. On the other
hand, with the joint routing and compression techniques whose
existence was established in [4], and actually constructed in this
paper, such instabilities are eliminated.

One more aspect doubted in [12] is whether the use of the
rate/distortion function as a measure of how much data is gener-
ated by the sensor network is appropriate. This doubt is based on
the fact that to approximate the rate/distortion function we require
processing of blocks of arbitrarily large size, whereas in a sen-
sor network we are only allowed to perform scalar processing. In
this regard, we would like to highlight an old result of information
theory which states that, at high rates and for Gaussian sources,
the performance gap between an optimal vector quantizer (capable
of approximating the r/d function arbitrarily closely) and a scalar
quantizer followed by an entropy coder is 0.255 bits/sample, irre-
spective of the dimension of the vector quantizer [10, pg. 2333].
Therefore, the rate of growth in the number of bits generated by
scalar processing differs from that of the rate/distortion function
by only a constant factor, and hence are the same in the big-oh
sense, thus making all the claims in [4] related to this topic per-
fectly valid.

In summary: (a) we maintain that the sensor broadcast prob-
lem can be solved for any network size, provided

� � ����� � � ;
(b) we stand corrected on our claim that any distortion


 � B
is

achievable in the sensor broadcast problem—only distortions for
which x ���+�������	��
��3
����

are indeed achievable; (c) we maintain
that it is possible to define meaningful notions of capacity with-
out involving time, based on which our claims in [4] are perfectly
valid; (d) we maintain that it is perfectly valid to measure the rate
of growth of the total traffic generated by the network using the
rate/distortion function of the entire network, as done in [4].

3.2. Future Work

There are a number of topics that we will need to address for the
writeup of a journal paper along these lines: (a) extend our results
to random networks, instead of the regular sampling patterns con-
sidered in this work; (b) extend the analysis of Section 2 to 2D
(but not the simulators, these do work on 2D grids already); and
(c) repeat the analysis of Section 2 for the family of maxflat filters
(used in the simulations), to determine the rate of convergence of
the traffic loads to

���������	� µ �3
���� as a function of the number of
zeros at Ä of the filters.

Acknowledgement—The author would like to thank Jason K.-C.
Chen (a student in the MEng program at Cornell), for help in the
development of the numerical simulations.

4. REFERENCES

[1] J. Barros and S. D. Servetto, “On the Capacity of the Reachback Channel in Wireless Sensor Networks,” in Proc.
IEEE Int. Workshop Multimedia Sig. Proc., US Virgin Islands, 2002, Invited paper to the special session on Signal
Processing for Wireless Networks.

[2] A. Hu and S. D. Servetto, “Optimal Detection for a Distributed Transmission Array,” in Proc. IEEE Int. Symp.
Inform. Theory (ISIT), Yokohama, Japan, 2003.

[3] C. Peraki and S. D. Servetto, “On the Maximum Stable Throughput Problem in Random Networks with Directional
Antennas,” in Proc. ACM MobiHoc, Annapolis, MD, 2003.

[4] A. Scaglione and S. D. Servetto, “On the Interdependence of Routing and Data Compression in Multi-Hop Sensor
Networks,” 2003, ACM/Kluwer Mobile Networks and Applications. Special issue with selected papers from ACM
MobiCom 2002. To appear. Available from http://people.ece.cornell.edu/servetto/.

[5] S. D. Servetto, “Quantization with Side Information: Lattice Codes, Asymptotics, and Applications in Wireless
Networks,” Submitted to the IEEE Trans. Inform. Theory. Available from http://people.ece.cornell.
edu/servetto/.

[6] S. D. Servetto, “Distributed Signal Processing Algorithms for the Sensor Broadcast Problem,” in Proc. 37th
Annual Conf. Inform. Sciences Syst. (CISS), Baltimore, MD, 2003.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms (2nd ed), MIT Press, 2001.

[8] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.

[9] P. Gupta and P. R. Kumar, “The Capacity of Wireless Networks,” IEEE Trans. Inform. Theory, vol. 46, no. 2, pp.
388–404, 2000.

[10] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Trans. Inform. Theory, vol. 44, no. 6, pp. 2325–2383,
1998.
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